Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism found that ’protects’ aggressive melanoma from angiogenesis inhibitors

08.10.2004


Northwestern University researchers have discovered a mechanism that may help to explain how angiogenesis inhibitors work on normal, blood vessel-forming endothelial cells, but not on insidious, aggressive melanoma cells that masquerade as endothelial-like cells by forming their own vascular networks, called "vasculogenic mimicry."



Mary J. C. Hendrix, professor of pediatrics at Northwestern University Feinberg School of Medicine and president and scientific director of the Children’s Memorial Research Center, led the study, results of which were published in the Oct. 6 issue of the Journal of the National Cancer Institute. Hendrix and her laboratory team are also members of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Hendrix and colleagues found that endostatin and two other angiogenesis inhibitors, which prevent new blood vessel growth that supports the spread of cancerous tumors, were effective in blocking endothelial cell formation of vascular networks, but were unable to prevent vascular networks formed by melanoma cells.


Further experiments showed that endothelial cells have more endostatin receptors than melanoma cells, suggesting a mechanistic basis for the differential response of the two cell types to angiogenesis inhibitors. Findings from the study may contribute to the development of new cancer therapies that target both angiogenesis and tumor cell vasculogenic mimicry. Moreover, because vasculogenic mimicry has been reported in several other tumor types, including breast, prostatic, ovarian and lung cancer, these findings may offer new insights for designing rational antivascular therapies in other forms of cancer, Hendrix said.

In the past decade, many new angiogenesis inhibitors have been identified, and several have been shown effective against tumor growth in laboratory experiments. However, results of early clinical trials with these inhibitors have not yet paralleled the success achieved in animal models. In their recent experiments, Hendrix and co-researchers examined effects of three angiogenesis inhibitors with different specificities (anginex, TNP-470, and endostatin) on vasculogenic mimicry in human melanoma cells and compared the results with effects on human endothelial cells.

Endothelial cell growth and migration were markedly inhibited by anginex, TNP-470 and endostatin, while the melanoma cells were relatively unaffected. The scientists subsequently investigated whether endothelial cells and melanoma cells expressed different levels of two newly discovered receptors (alpha 5 beta 1 integrin and heparin sulfate proteoglycan 2) for the angiogenesis inhibitor endostatin. Results showed that endothelial cells have significantly higher levels of these receptors.

"The differential response of endothelial cells and melanoma cells to angiogenesis inhibitors in our study may provide additional clues about the mechanistic interactions between endothelia and proliferating tumors and suggest additional targets for antivascular and antiangiogenic drug therapy," Hendrix said.

Hendrix’s co-researchers on this study were: Richard E. B. Seftor; Elizabeth A. Seftor; Angela R. Hess; Lynn M. Gruman; and Dawn A. Kirschmann, Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University. Daisy W.J. van der Schaft, and Arjan W. Griffioen are affiliated with the Research Institute for Growth and Development, Maastricht, The Netherlands. Yumi Yokoyama is with the University of Minnesota, Minneapolis.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>