Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism found that ’protects’ aggressive melanoma from angiogenesis inhibitors

08.10.2004


Northwestern University researchers have discovered a mechanism that may help to explain how angiogenesis inhibitors work on normal, blood vessel-forming endothelial cells, but not on insidious, aggressive melanoma cells that masquerade as endothelial-like cells by forming their own vascular networks, called "vasculogenic mimicry."



Mary J. C. Hendrix, professor of pediatrics at Northwestern University Feinberg School of Medicine and president and scientific director of the Children’s Memorial Research Center, led the study, results of which were published in the Oct. 6 issue of the Journal of the National Cancer Institute. Hendrix and her laboratory team are also members of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Hendrix and colleagues found that endostatin and two other angiogenesis inhibitors, which prevent new blood vessel growth that supports the spread of cancerous tumors, were effective in blocking endothelial cell formation of vascular networks, but were unable to prevent vascular networks formed by melanoma cells.


Further experiments showed that endothelial cells have more endostatin receptors than melanoma cells, suggesting a mechanistic basis for the differential response of the two cell types to angiogenesis inhibitors. Findings from the study may contribute to the development of new cancer therapies that target both angiogenesis and tumor cell vasculogenic mimicry. Moreover, because vasculogenic mimicry has been reported in several other tumor types, including breast, prostatic, ovarian and lung cancer, these findings may offer new insights for designing rational antivascular therapies in other forms of cancer, Hendrix said.

In the past decade, many new angiogenesis inhibitors have been identified, and several have been shown effective against tumor growth in laboratory experiments. However, results of early clinical trials with these inhibitors have not yet paralleled the success achieved in animal models. In their recent experiments, Hendrix and co-researchers examined effects of three angiogenesis inhibitors with different specificities (anginex, TNP-470, and endostatin) on vasculogenic mimicry in human melanoma cells and compared the results with effects on human endothelial cells.

Endothelial cell growth and migration were markedly inhibited by anginex, TNP-470 and endostatin, while the melanoma cells were relatively unaffected. The scientists subsequently investigated whether endothelial cells and melanoma cells expressed different levels of two newly discovered receptors (alpha 5 beta 1 integrin and heparin sulfate proteoglycan 2) for the angiogenesis inhibitor endostatin. Results showed that endothelial cells have significantly higher levels of these receptors.

"The differential response of endothelial cells and melanoma cells to angiogenesis inhibitors in our study may provide additional clues about the mechanistic interactions between endothelia and proliferating tumors and suggest additional targets for antivascular and antiangiogenic drug therapy," Hendrix said.

Hendrix’s co-researchers on this study were: Richard E. B. Seftor; Elizabeth A. Seftor; Angela R. Hess; Lynn M. Gruman; and Dawn A. Kirschmann, Children’s Memorial Research Center, Northwestern University Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University. Daisy W.J. van der Schaft, and Arjan W. Griffioen are affiliated with the Research Institute for Growth and Development, Maastricht, The Netherlands. Yumi Yokoyama is with the University of Minnesota, Minneapolis.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>