Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic modification of linseed produces healthier omega 3 and 6 fatty acids

20.09.2004


Improved production of polyunsaturated fats in oilseed crops will benefit human health and the environment



In research reported this month in The Plant Cell, scientists succeeded in producing genetically modified linseed plants that accumulate significant levels of very long chain poly-unsaturated fatty acids (PUFA) in seed. This is the first report of the successful engineering of very long chain PUFA into an oilseed crop, and is an excellent example of how genetic engineering of agronomically important species can provide real benefits to human health and nutrition and the environment.

In research reported this month in The Plant Cell, Ernst Heinz at the University of Hamburg (Germany) and colleagues succeeded in producing genetically modified linseed plants that accumulate significant levels of very long chain poly-unsaturated fatty acids (PUFA) in seed. The work is the result of an international collaboration between scientists at several research institutions in Germany (University of Hamburg, BASF Plant Science GmbH and Forschungszentrum Borstel), Rothamsted Research Station in the U.K., and Kansas State University in the U.S. This research is an excellent example of how genetic engineering of agronomically important species can provide real benefits to human health and nutrition and the environment. As demand rises for edible oils that are low in saturated fats and high in poly-unsaturated fats, in particular very long chain omega 3- and omega 6-poly-unsaturated fats, the production of these oils in plants may reduce environmentally and economically unsustainable pressures on both wild and farmed fisheries.


Fatty acids are long straight chains of carbon atoms, ranging in length from about 12 to 22 carbons (C12 to C22). They have one water-soluble end and one oil-soluble methyl end, and are studded with hydrogen atoms along the length of the carbon chain. They are essential components of the membranes of all living organisms. Fatty acid chains that are linked by single bonds between carbon atoms are said to be "saturated" by hydrogen atoms, whereas the introduction of double bonds between carbon atoms leads to correspondingly fewer bonds to hydrogen atoms along the chain, and such fatty acids are said to be "unsaturated". A "mono-unsaturated" fatty acid contains a single double bond within the carbon chain, whereas "poly-unsaturated" fatty acids contain two or more double bonds.

PUFA are increasingly recognized as important components of a healthy human diet. Increased consumption, in particular of the very long chain PUFA such as those found in fish oils, has been linked to a decreased risk of heart disease, and also to a variety of other health benefits, including protection against inflammatory diseases such as arthritis, irritable bowel syndrome and some cancers, and the promotion of healthy brain and eye development in infants. Scientists have been working on engineering the production of the very long chain PUFA in plants, because increased consumption of fish and fish oils is associated with other nutritional and environmental problems. First, it is recommended that consumption of many types of fish be limited due to widespread contamination with pollutants, such as heavy metals and dioxins. Second, world wide fish stocks are being rapidly depleted, and fish farming is associated with its own set of environmental issues. Therefore, engineering the production of very long chain PUFAs into oilseed crops could confer significant advantages in terms of both human nutrition and the environment.

Oilseed crops, such as canola, safflower, and linseed, typically accumulate a high proportion of C18 PUFA such as linoleic acid and alpha-linoleic acid in their seed. These are called "essential" fatty acids for humans, because they are not synthesized in the human body and must be obtained from dietary sources. Once consumed, they may be metabolized into very long chain (C20 and C22) PUFA in the human body. However, this process is slow and inefficient compared to the direct consumption of C20 and C22 PUFA that may be obtained from fish oils. Oilseed crop species contain all of the proteins and enzymes necessary for the biosynthesis of the range of fatty acids present in seed oil, but they lack the few additional enzymes (certain fatty acyl desaturases and elongases) necessary for the biosynthesis of very long chain PUFA.

Dr. Heinz and his colleagues produced linseed (Linum usitatissimum) and tobacco (Nicotiana tabacum) plants that synthesize very long chain PUFA in their seed by introducing genes for fatty acyl desaturases and elongases in genetic transformation experiments. First, protein sequences for fatty acyl desaturases and elongases were analyzed from a variety of organisms that produce very long-chain PUFA, including a fungus (Mortierella alpina), alga (Phaeodactylum tricornutum), moss (Physcomitrella patens), nematode (Caenorhabditis elegans), and another plant (Borago officinalis). DNA coding sequences for these genes were then introduced into linseed and tobacco plants, and expression of the proteins directed into the seed with the use of seed-specific gene promoter sequences. The best results were obtained with the use of the plant and algal gene sequences. These transgenic plants accumulated significant levels of very long chain PUFA in their seed. Analysis of fatty acid profiles of these plants also allowed the researchers to identify constraints on the accumulation of the most desirable PUFA, pointing the way to future experiments aimed at making improvements in the levels of accumulation and specific profiles of very long chain PUFAs in genetically modified oilseed crops. In addition to the possibility of providing healthier, more nutritious oils for human consumption, this work will lead to the production of high quality animal feed that could improve the PUFA content of animal products such as meat, eggs, and dairy foods.

Nancy Eckardt | EurekAlert!
Further information:
http://www.aspb.org
http://www.plantcell.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>