Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Byproduct of water-disinfection process found to be highly toxic

16.09.2004


A recently discovered disinfection byproduct (DBP) found in U.S. drinking water treated with chloramines is the most toxic ever found, says a scientist at the University of Illinois at Urbana-Champaign who tested samples on mammalian cells.

The discovery raises health-related questions regarding an Environmental Protection Agency plan to encourage all U.S. water-treatment facilities to adopt chlorine alternatives, said Michael J. Plewa [PLEV-uh], a genetic toxicologist in the department of crop sciences. "This research says that when you go to alternatives, you may be opening a Pandora’s box of new DBPs, and these unregulated DBPs may be much more toxic, by orders of magnitude, than the regulated ones we are trying to avoid."

Plewa and colleagues, three of them with the EPA, report on the structure and toxicity of five iodoacids [EYE O-doe-acids] found in chloramines-treated water in Corpus Christi, Texas, in this month’s issue of the journal Environmental Science & Technology. The findings, which appeared online in advance, already have prompted a call from the National Rural Water Association for a delay of EPA’s Stage 2 rule aimed at reducing the amount of previously identified toxic DBPs occurring in chlorine-treated water. "The iodoacids may be the most toxic family of DBPs to date," Plewa said in an interview. One of the five detailed in the study, iodoacetic acid, is the most toxic and DNA-damaging to mammalian cells in tests of known DBPs, he said. "These iodoacetic acids raise new levels of concerns," he said. "Not only do they represent a potential danger because of all the water consumed on a daily basis, water is recycled back into the environment. What are the consequences? The goal of Stage 2 is to reduce DBPs, particularly the ones that fall under EPA regulations, and especially the ones that have been structurally identified and found to be toxic."



The use of chloramines, a combination of chlorine and ammonia, is one of three alternatives to chlorine disinfectant, which has been used for more than 100 years. Other alternatives are chlorine-dioxide and ozone. All treatments react to compounds present in a drinking water source, resulting in a variety of chemical disinfectant byproducts.

Some 600 DBPs have been identified since 1974, Plewa said. Scientists believe they’ve identified maybe 50 percent of all DBPs that occur in chlorine-treated water, but only 17 percent of those occurring in chloramines-treated water, 28 percent in water treated with chlorine-dioxide, and just 8 percent in ozone-treated water. Of the structurally identified DBPs, he said, the quantitative toxicity is known for maybe 30 percent. Some DBPs in chlorine-treated water have been found to raise the risks of various cancers, as well as birth and developmental defects.

Corpus Christi’s water supply has high levels of bromide and iodide because of the chemical makeup of the ancient seabed under the water source. Local water sources lead to different DBPs. Whether the types of iodoacids found in Corpus Christi’s treated water might be simply a reflection of local conditions, and thus a rare occurrence, is not known. The DBPs in Corpus Christi’s water were found as part of an EPA national occurrence survey of selected public water-treatment plants done in 2002. The survey reported on the presence of 50 high-priority DBPs based on their carcinogenic potential. The report, published in April, also identified 28 new DBPs.

Because so many new DBPs are being found in drinking water, Plewa said, two basic questions should be asked: How many are out there? And how many new ones will be formed as chlorine treatments are replaced with alternative methods?

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>