Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Glimpse of DNA Binding to Viral Enzyme

14.09.2004


Two views of the adenovirus protease, an enzyme required for viral replication. DNA, depicted by the white "sticks," is shown binding to the enzyme on the right. Drugs that prevent the DNA from binding should prevent the virus from replicating and stop an infection.


May serve as new target for antiviral drugs

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and the Albert Einstein College of Medicine have produced the first molecular-scale images of DNA binding to an adenovirus enzyme — a step they believe is essential for the virus to cause infection. The images, which appear on the cover of the October 2004 issue of Molecular and Cellular Proteomics, show how binding to DNA may stimulate the enzyme and are already being used to design new antiviral drugs to block this interaction.

“We were quite surprised to see that DNA actually stimulated the activity of the enzyme,” said Brookhaven biologist Walter Mangel, a co-author on the paper. “If we can block this interaction, we should be able to prevent the virus from replicating, and thereby thwart infection.”



Adenoviruses cause respiratory, gastrointestinal, and eye infections, including highly contagious viral pink eye. Some adenovirus eye infections lead to blindness. Respiratory epidemics of adenovirus are often prevalent on army bases. And in patients with compromised immune systems, such as those infected with human immunodeficiency virus (HIV), an opportunistic adenovirus infection can be deadly.

During infection, adenovirus makes an enzyme called a protease, which cleaves or degrades viral “scaffolding” proteins to complete the maturation of newly synthesized virus particles. Mangel and others have been working to understand all the steps necessary for this enzyme’s function, looking for new ways to stop its action and, therefore, block an adenovirus infection (see: http://www.bnl.gov/discover/Spring_04/anti_viral_1.asp ).

The scientists didn’t expect the viral DNA to bind to the protease, but they figured they should look just to rule out such an interaction. “It was something we had to do, to make sure they did not interact,” Mangel said. The discovery that the viral DNA interacts with the protease was unprecedented and led them to characterize the interaction in detail. The scientists now believe that inside the virus particle the protease uses the DNA as a guide wire, sliding along the genetic material to remove the internal “scaffolding” proteins, all located near the DNA.

The team used a technique called synchrotron footprinting, which was pioneered by paper co-author Mark Chance and his colleagues at the Albert Einstein College of Medicine, to show where DNA binds on the adenovirus protease.

“Synchrotron footprinting is a technique recently developed at Einstein that allows structural information on the contacting surfaces of biological molecules to be precisely mapped. These contact points are regions providing critical communication in the cell,” Chance explained. “In this study the footprinting approach provided information on the DNA binding region of the adenovirus protease that has not been solved by other techniques and can be used in drug design.”

At the National Synchrotron Light Source — a facility that produces extremely bright beams of x-ray, infrared, and ultraviolet light at Brookhaven Lab — Einstein’s Sayan Gupta, the study’s lead author, bombarded different solutions of the adenovirus protease and DNA with x-rays and characterized the changes that occurred on the surface of the protein. With this technique, the team was able to deduce the location of the DNA binding site based upon the changes in accessible surface area.

“There is extensive contact between the enzyme and the DNA,” Gupta said. “The DNA wraps around more than half the enzyme molecule. It appears like a strap, holding two parts of the protease together.”

Since the DNA binding site is quite long, there are numerous locations along it that could be used as targets for drugs to block the interaction and act as antiviral agents, Mangel said. The scientists have already begun looking for such drugs and hope to have the National Institutes of Health test some of them for anti-viral activity within a year.

This work was funded by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science, the Biotechnology Resource Centers Program of the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, and by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/discover/Spring_04/anti_viral_1.asp

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>