Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare deficit maps thinking circuitry

02.09.2004


3-D MRI scan rendering of the brain’s white matter (nerve fibers), showing small area (yellow) found to lack grey matter in people with Williams Syndrome. Impaired input from this area is thought to have resulted in lack of activation in downstream parts of the circuit, which processes locations of objects, when participants performed visual-spatial tasks, such as paying attention to locations of faces and houses (red), assembling puzzle-like pieces and matching geometric objects (blue). Overlap regions are shown in purple. Source: Shane Kippenhan, Ph.D.,
NIMH Clinical Brain Disorders Branch


The structurally abnormal site is obscured within the cortex’s folds in this full rendering of the brain, showing the functionally abnormal circuit. Source: Shane Kippenhan, Ph.D., NIMH Clinical Brain Disorders Branch


Using brain imaging, neuroscientists at the NIH’s National Institute of Mental Health (NIMH) have pinpointed the site of a defect in a brain circuit associated with a specific thinking deficit. Their study demonstrates how a rare genetic disorder, Williams Syndrome, can offer clues as to how genetic flaws may translate into cognitive symptoms in more common and complex major mental disorders. Andreas Meyer-Lindenberg, M.D., Karen Berman, M.D., and colleagues, traced the thinking deficit to a circuit at the back of the brain that processes locations of objects in the visual field. The researchers report on their Magnetic Resonance Imaging (MRI) study in the September 2, 2004 Neuron.

The study focused on the inability to visualize an object as a set of parts and then construct a replica, as in assembling a puzzle – a key cognitive deficit experienced by people with Williams Syndrome. In addition to this visuospatial construction deficit, people with Williams Syndrome also tend to be overly friendly and anxious and often have mental retardation and learning disabilities. Compared to most mental disorders, which are thought to involve complex interactions between multiple genes and environmental triggers, the genetic basis of Williams Syndrome is remarkably well understood. People with the disorder lack about 21 genes in a particular part of chromosome 7.

"Williams Syndrome yields a unique opportunity to study how genes influence our ability to construct our social and spatial worlds," said NIMH Director Thomas Insel, M.D. "By studying people with this disorder, we can discover how genetic mutations change not only molecular and cellular processes, but lead to differences in the brain circuitry for complex aspects of cognition."



To identify where in the brain things go awry in the visuospatial construction deficit, Meyer-Lindenberg and Berman recruited 13 "high functioning" Williams Syndrome patients with normal intelligence. Even though they were missing the same genes as their mentally retarded peers, they were able to perform complex cognitive tasks during functional MRI (fMRI) experiments, and their brain structure and activity could be compared with matched healthy controls of similar IQ.

The researchers suspected that the visuospatial construction deficit would be found in a visual processing circuit that courses forward and upward from the back of the brain. This "where" circuit processes information about locations of objects and spatial relationships, whereas a parallel "what" circuit, running downward from the back of the brain, handles information about content of objects.

In the fMRI phase of the study, participants were scanned while performing spatial tasks – matching geometric objects, assembling puzzle-like pieces into a square, and attending to the location of faces and houses. In each case, only those with Williams Syndrome failed to activate the "where" circuit, while the controls showed increased activation in that circuit. The patients’ brains showed no difference from controls on tasks that activated the "what" circuit.

Using structural MRI, the researchers found a small region early in the "where" circuit that lacked gray matter (neuron bodies) in the Williams Syndrome participants. Its location – conspicuously just before the functionally abnormal areas – raised suspicions; and a path analysis confirmed that the functional abnormalities could be accounted for by defective input from this structurally abnormal area. The researchers hypothesize that it is likely the primary site of the visuospatial construction deficit. They are now attempting to trace the deficit to individual genes in this structurally abnormal area.

"The location of the abnormality also suggests a strategy for improving visual-spatial-construction function," noted Meyer-Lindenberg. "It is like a roadblock, but it should mainly affect stimuli that don’t move. Incorporating motion into stimuli might provide an alternate route and circumvent the problem by engaging temporal lobe circuitry."

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>