Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-cancer compound found to block late-stage breast-cancer cell growth

01.09.2004


A well known anti-cancer agent in certain vegetables has just had its reputation enhanced. The compound, in broccoli and other cruciferous vegetables, has been found to be effective in disrupting late stages of cell growth in breast cancer.



Keith Singletary and doctoral student Steven Jackson of the University of Illinois at Urbana-Champaign report their finding involving sulforaphane (SUL), which they say could ultimately be used to enhance the prevention and treatment of breast cancer, in the September issue of the Journal of Nutrition.

“This is the first report to show how the naturally occurring plant chemical sulforaphane can block late stages of the cancer process by disrupting components of the cell called microtubules,” said Singletary, a professor in the department of food science and human nutrition. “We were surprised and pleased to find that SUL could block the growth of breast cells that were already cancerous.”


SUL is abundant in such vegetables as broccoli, brussels sprouts and kale. Chewing causes the cell walls of these vegetables to break, and SUL is released into the body.

Singletary, a researcher in phytochemicals and cancer chemoprevention, and Jackson exposed cultures of malignant human breast cancer cells to SUL. Within hours, SUL blocked cell division and disrupted microtubules, which are long, slender cylinders made up of tubulin (protein), that are essential for the separation of duplicated chromosomes during cell division.

“It is not yet clear whether the doses required to produce inhibition of tubulin polymerization are higher than those achievable via dietary intakes,” wrote Jackson and Singletary. “However, the results show that tubulin disruption may be an important explanation for SUL’s antiproliferative action.” “These findings are significant since SUL’s actions appear similar to a group of anticancer drugs currently in use, such as Taxol,” Singletary said.

SUL is studied extensively for its effects against cancer. Previous reports have shown that SUL induces defensive mechanisms that are effective in protecting normal cells from the initiation of cancer. “More than 10 years ago, researchers at Johns Hopkins University reported that SUL is a potent inducer of enzyme systems that can defend against carcinogens,” Singletary said. Such defense mechanisms are effective during the early stage of cancer.

The Illinois research extends the 1992 discovery at Johns Hopkins and pinpoints how SUL works during later stages of cancer, such that SUL can suppress the orderly division process in human breast cancer cells. “The findings may be helpful in the development of new breast cancer prevention and treatment strategies,” Singletary said. “For example, it may be possible that ingesting SUL in combination with certain natural compounds or drugs could enhance their anticancer effectiveness and reduce side effects.”

According to the American Cancer Society, breast cancer this year will account for 15 percent of all cancer deaths in women, and approximately 275,000 new breast cancer cases of various forms will be diagnosed.

Improvements in treatments such as chemotherapy have led to an 88 percent survival rate in Caucasian women and a 74 percent survival rate in African-American women, according to the most recent ACS survey in 2003.

However, some current chemotherapy drugs have side effects that have the ACS and other organizations seeking new strategies that combine chemotherapy drugs with other treatments to potentially lessen the toxic effects.

The new Illinois study confirms a previous study in mice. In the February 2004 issue of the journal Carcinogenesis, Singletary and Jackson reported that SUL treatments in mice with implanted cancer cells resulted in decreased tumor size.

More research is needed to assess SUL’s potential in countering breast cancer development, Singletary said. “What we do not know is how specific SUL and other similar phytochemicals are toward cancer cells compared to normal cells,” he said. “We also do not know against which cancers SUL’s microtubule-targeting actions are most effective.”

Future studies in Singletary’s lab will address those issues. The University of Illinois Agricultural Experiment Station and the U.S. Department of Agriculture funded the research.

Molly McElroy | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>