Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-cancer compound found to block late-stage breast-cancer cell growth

01.09.2004


A well known anti-cancer agent in certain vegetables has just had its reputation enhanced. The compound, in broccoli and other cruciferous vegetables, has been found to be effective in disrupting late stages of cell growth in breast cancer.



Keith Singletary and doctoral student Steven Jackson of the University of Illinois at Urbana-Champaign report their finding involving sulforaphane (SUL), which they say could ultimately be used to enhance the prevention and treatment of breast cancer, in the September issue of the Journal of Nutrition.

“This is the first report to show how the naturally occurring plant chemical sulforaphane can block late stages of the cancer process by disrupting components of the cell called microtubules,” said Singletary, a professor in the department of food science and human nutrition. “We were surprised and pleased to find that SUL could block the growth of breast cells that were already cancerous.”


SUL is abundant in such vegetables as broccoli, brussels sprouts and kale. Chewing causes the cell walls of these vegetables to break, and SUL is released into the body.

Singletary, a researcher in phytochemicals and cancer chemoprevention, and Jackson exposed cultures of malignant human breast cancer cells to SUL. Within hours, SUL blocked cell division and disrupted microtubules, which are long, slender cylinders made up of tubulin (protein), that are essential for the separation of duplicated chromosomes during cell division.

“It is not yet clear whether the doses required to produce inhibition of tubulin polymerization are higher than those achievable via dietary intakes,” wrote Jackson and Singletary. “However, the results show that tubulin disruption may be an important explanation for SUL’s antiproliferative action.” “These findings are significant since SUL’s actions appear similar to a group of anticancer drugs currently in use, such as Taxol,” Singletary said.

SUL is studied extensively for its effects against cancer. Previous reports have shown that SUL induces defensive mechanisms that are effective in protecting normal cells from the initiation of cancer. “More than 10 years ago, researchers at Johns Hopkins University reported that SUL is a potent inducer of enzyme systems that can defend against carcinogens,” Singletary said. Such defense mechanisms are effective during the early stage of cancer.

The Illinois research extends the 1992 discovery at Johns Hopkins and pinpoints how SUL works during later stages of cancer, such that SUL can suppress the orderly division process in human breast cancer cells. “The findings may be helpful in the development of new breast cancer prevention and treatment strategies,” Singletary said. “For example, it may be possible that ingesting SUL in combination with certain natural compounds or drugs could enhance their anticancer effectiveness and reduce side effects.”

According to the American Cancer Society, breast cancer this year will account for 15 percent of all cancer deaths in women, and approximately 275,000 new breast cancer cases of various forms will be diagnosed.

Improvements in treatments such as chemotherapy have led to an 88 percent survival rate in Caucasian women and a 74 percent survival rate in African-American women, according to the most recent ACS survey in 2003.

However, some current chemotherapy drugs have side effects that have the ACS and other organizations seeking new strategies that combine chemotherapy drugs with other treatments to potentially lessen the toxic effects.

The new Illinois study confirms a previous study in mice. In the February 2004 issue of the journal Carcinogenesis, Singletary and Jackson reported that SUL treatments in mice with implanted cancer cells resulted in decreased tumor size.

More research is needed to assess SUL’s potential in countering breast cancer development, Singletary said. “What we do not know is how specific SUL and other similar phytochemicals are toward cancer cells compared to normal cells,” he said. “We also do not know against which cancers SUL’s microtubule-targeting actions are most effective.”

Future studies in Singletary’s lab will address those issues. The University of Illinois Agricultural Experiment Station and the U.S. Department of Agriculture funded the research.

Molly McElroy | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>