Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NPAS3 and NPAS1 Genes May be Linked to Psychosis


Mice with specific genetic mutations exhibit behavior similar to human psychosis, report UT Southwestern Medical Center at Dallas researchers, providing further support to the notion of a genetic link to schizophrenia.

The researchers genetically engineered mice with a mutation in the gene NPAS3, a mutation in the gene NPAS1 or a mutation in both genes. Both genes encode proteins that switch other genes on and off in brain cells. “These mice display certain deficits that are potentially consistent with schizophrenia,” said Dr. Steven McKnight, chairman of biochemistry at UT Southwestern and senior author of the study that will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and is to be posted online this week.

“It’s too early to tell whether the abnormal behavior we observed in these mutated mice can be directly connected with human disease. On the other hand, we find it intriguing that members of a Canadian family carrying a mutation in the human NPAS3 gene have been reported to suffer from schizophrenia.”

Normal mice in a pen will climb over each other and interact, but the mice with the genetic mutations fail to socialize in this way. Instead, the mutants dart about wildly, avoiding interaction with their normal siblings.

In addition, the mutant mice do not have a normal startle response, and have a distinct reduction of a protein called reelin in their brains. Other researchers have shown in postmortem examinations of the brain tissue of schizophrenics that these patients have a reduction in reelin, said Dr. McKnight.

Schizophrenics also have problems socializing and often have enhanced physical activity, similar to that of the mutant mice. An impaired startle response, Dr. McKnight said, also may lead to a schizophrenia diagnosis.

More than 2 million Americans are affected by schizophrenia, according to the National Institute of Mental Health. The illness may impair a person’s ability to manage emotions, interact with others and think clearly. Symptoms include hallucinations, delusions, disordered thinking and social withdrawal. Most schizophrenia patients suffer chronically or episodically throughout their lives, and one of every 10 people with schizophrenia eventually commits suicide.

“We recognize that the connection of our study to human psychosis or schizophrenia is very tenuous,” Dr. McKnight said. “It’s difficult to draw direct parallels between the simple behavioral abnormalities observed in the mutant mice and the complex, delusional cognitive defects that characterize human schizophrenia. Our results may turn out to have nothing to do with schizophrenia, or they could point to something more substantial.”

Little is known about the NPAS1 and NPAS3 genes. Both genes are expressed in brain cells called inhibitory interneurons. These neurons are smaller than the typical excitatory neurons, which pass electrical signals amongst themselves and act as the brain’s wiring. The role of inhibitory interneurons, on the other hand, is to dampen the activity of excitatory neurons.

The NPAS1 and NPAS3 proteins are transcription factors that can activate or deactivate other genes. Just which genes they may control is unclear, Dr. McKnight said. Dr. McKnight and his research team are currently investigating what genes and what kind of brain cells the NPAS1 and NPAS3 proteins are acting upon. Information about this particular chemical pathway could provide further clues to a genetic link with human psychosis.

Other UT Southwestern biochemistry researchers involved in the study were first authors Drs. Claudia Erbel-Sieler and Xinle Wu, both postdoctoral researchers, and Carol Dudley, senior research scientist; Sandi Jo Estill, research assistant, and Tina Han, research technician. Dr. Ramon Diaz-Arrastia, associate professor of neurology at UT Southwestern and researchers from the University of Mississippi, the University of Cincinnati Medical School and the Children’s Medical Center in Cincinnati also participated.

The research was supported, in part, by the National Institute of Mental Health, the McKnight Foundation for Neuroscience and the Morton H. Meyerson Tzedukah Fund.

| newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>