Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists shed light on the mystery of photosynthesis


Scientists at the University of Sheffield are part of an international team that has become the first to successfully discover how the component parts of photosynthesis fit together within the cell membrane. In a paper, The native architecture of a photosynthetic membrane, published in Nature on 26 August 2004, they describe how the configuration of the three structures that allow photosynthesis to occur fit together, and find that Mother Nature has developed a much more complex and effective system than was previously thought.

Photosynthesis is the reaction that allows plants and bacteria to take in sunlight and convert it into chemical energy, by reducing carbon dioxide and water into carbohydrates and oxygen. Photosynthesis is the backbone of life on Earth – all the food we eat, the oxygen we breathe and the fossil fuel we burn are products of this reaction.

Professor Neil Hunter from the University of Sheffield explains, “Photosynthesis is the single most important chemical reaction on Earth and it is fascinating to see for the first time how nature has overcome the problem of harvesting and utilising solar energy.

“Although scientists have known the structures of the individual components involved in photosynthesis for some time, this is the first time we have managed to see how they all fit together and work as a system. To achieve this we have used an Atomic Force Microscope, which ‘feels’ the shape of individual molecules and converts this into a picture, to see the system within an individual cell membrane. We have discovered Nature’s way of collecting light for photosynthesis.

“We already knew that during photosynthesis light is collected by an antenna made up of two light harvesting complexes – LH1 and LH2, and then passed to a reaction centre (RC) where it is converted into chemical energy. However, these were like individual jigsaw pieces and we had yet to see the full picture.

“The way photosynthesis works is that groups of LH2 complexes pick up the light, and pass them it around among themselves until the light comes across an LH2 complex which is touching one of the larger LH1 complexes. The energy then circulates around the LH1 complex, or passes to another LH1, until it moves on to the reaction centre.

“We found that the LH2 complexes are structured in an antenna-like shape and when light is scarce they co-operate by joining together to allow them to make the best possible use of the limited light available.

“The LH1 complexes are each attached to their own RC and from looking at the images we believe that if an LH1 takes in light whilst its reaction centre is ‘busy’ then it will keep passing the energy on to neighbouring LH1 complexes, until an unoccupied reaction centre is found.

“We hope to test this particular theory further but the purpose of both of these systems would be to maximise the efficiency of photosynthesis. The process of harvesting light energy is over 95% efficient, which is an incredible figure.

“This work doesn’t only have implications for our understanding of photosynthesis, but also for the future of molecular science. By looking at the world on an individual molecular level scientists have the opportunity to learn more about an incredible number of biological systems and processes.”

Lorna Branton | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>