Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain protein regulates sleep and anxiety

19.08.2004


Findings point to a different way to treat sleep disorders and anxiety



UC Irvine pharmacology researchers have found how a recently discovered brain protein plays a major role regulating sleep and stress – a discovery that can lead to a new class of drugs for treating ailments ranging from sleep and anxiety disorders to attention deficit disorder.

The UCI team conducted tests to see how neuropeptide S (NPS) affected behavioral responses in rodents. They found that NPS increases alertness, suppresses sleep and even controls stress responses. This establishes NPS, which was first discovered in 2002, as an important modulator of sleep and alertness. This study also suggests NPS has potential as a target for new drugs to treat sleep disorders. The study appears in the Aug. 19 issue of Neuron.


"Since our knowledge of NPS is so new, we may be at the tip of the iceberg in understanding its function," said Rainer Reinscheid, assistant adjunct professor in pharmacology and lead researcher in the study. "We’ve found NPS to be so active with sleep and anxiety behavior that it can be a very attractive drug target, both to enhance and to suppress its function."

In testing how NPS is involved with both sleep regulation and stress behaviors, the researchers found that NPS is produced by previously unidentified neurons in a brain stem region known for regulating arousal and anxiety. Further tests demonstrated that rats injected with NPS showed increased alertness and reduced slow-wave and REM sleep over untreated rats.

NPS receptor proteins were also detected in stress-related brain regions such as the amygdala and thalamus. In behavior tests that measure their stress-related anxiety, mice injected with NPS show fewer anxiety responses and increased activity than untreated mice. Sleep and fatigue are in a balance – insufficient sleep will increase fatigue, and only sleeping can reduce fatigue. There is a variety of sleep and fatigue disorders, which range from the most severe affecting only a set of individuals to mild ones nearly everyone will encounter.

The most severe form of sleep disorder is narcolepsy, in which affected individuals suffer from irresistible sleep attacks. Most common is the excessive daytime sleepiness that may result from chronic sleep deprivation or sleep impairments. Very little is known about the basic mechanisms that regulate these physiological responses, but the UCI study provides a first glance at a neuropeptide that affects these sleep mechanisms.

"Some 100,000 Americans are currently treated for excessive daytime sleepiness, but the number of the undiagnosed is far larger," said study co-author Olivier Civelli, the Eric L. and Lila D. Nelson Chair in Neuropharmacology at UCI. "Furthermore, symptoms of sleepiness, often recognized as fatigue, are associated with numerous other illnesses, such as multiple sclerosis, Parkinson’s disease and also depression. If it can be shown that the NPS system is a major modulator of fatigue, then its therapeutic potentials will be immense."

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>