Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in neuroscience

09.08.2004


Malaria drug blocks brain conduits, a boon for neuroscience research

Brown University researchers have discovered that mefloquine, an anti-malarial drug, blocks two gap junction proteins, or connexins, in low doses and with very few side effects in the brains of laboratory mice. The work opens an important door: Connexins found in high concentrations in the brain are believed to play a critical role in movement, vision and memory.

To understand how these communication "tunnels" work, scientists must be able to shut them off. Once those tunnels are disabled, researchers can pinpoint the information that connexins pass between nerve cells and determine how that information affects how the body’s development and function.



A technique already exists to study connexins.

Scientists can remove, or "knock out," genes that hold the recipe for connexins, then study the results in mice. But the Brown University scientists who worked on the experiment – Barry Connors, professor of neuroscience, and Scott Cruikshank, research associate – said "knockout mice" aren’t a perfect model. As mice – and humans – grow, they can compensate for missing genes by turning other genes on or off and cooking up other protein recipes. These biochemical changes can make it difficult to recognize connexins’ role.

But mefloquine in adult mice precisely and potently blocks connexins called Cx36 and Cx50. There are about 20 kinds of connexins in the brain and eye, as well in organs such as the heart, liver and pancreas. Cx36 is found in the brain; Cx50 is located in the lens. By specifically blocking them, Cruikshank said mefloquine will be a useful tool for electrical synapse study.

"Mefloquine isn’t a magic bullet, but it seems to be better than anything out there," he said. "It’s a lot more selective, so it has real utility for science."

Connors said the discovery, detailed in the online early edition of the Proceedings of the National Academy of Sciences for the week of August 2, could shed light on the cause of epilepsy and seizures. Scientists suspect that a Cx36 mutation causes these common neurological conditions, which occur when the messages swapped between synapses get scrambled. Meanwhile, a Cx50 mutation can form cataracts in mice.

"Electrical synapses were only discovered in the neocortex of mammals five years ago," Connors said, "so they are still a mystery. What do they control? How? When? These are big questions in neuroscience and this drug will help us answer some of them."

Conducted with scientists at Albert Einstein College of Medicine in New York and funded by the National Institutes of Health, the research offered up an intriguing secondary finding.

In rare cases, mefloquine can cause anxiety, panic attacks, depression and other psychotic side effects. Doctors have never understood why. Connors and Cruikshank said their research may hold the answer: Connexin shut-down in the brain.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>