Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discoveries in neuroscience

09.08.2004


Malaria drug blocks brain conduits, a boon for neuroscience research

Brown University researchers have discovered that mefloquine, an anti-malarial drug, blocks two gap junction proteins, or connexins, in low doses and with very few side effects in the brains of laboratory mice. The work opens an important door: Connexins found in high concentrations in the brain are believed to play a critical role in movement, vision and memory.

To understand how these communication "tunnels" work, scientists must be able to shut them off. Once those tunnels are disabled, researchers can pinpoint the information that connexins pass between nerve cells and determine how that information affects how the body’s development and function.



A technique already exists to study connexins.

Scientists can remove, or "knock out," genes that hold the recipe for connexins, then study the results in mice. But the Brown University scientists who worked on the experiment – Barry Connors, professor of neuroscience, and Scott Cruikshank, research associate – said "knockout mice" aren’t a perfect model. As mice – and humans – grow, they can compensate for missing genes by turning other genes on or off and cooking up other protein recipes. These biochemical changes can make it difficult to recognize connexins’ role.

But mefloquine in adult mice precisely and potently blocks connexins called Cx36 and Cx50. There are about 20 kinds of connexins in the brain and eye, as well in organs such as the heart, liver and pancreas. Cx36 is found in the brain; Cx50 is located in the lens. By specifically blocking them, Cruikshank said mefloquine will be a useful tool for electrical synapse study.

"Mefloquine isn’t a magic bullet, but it seems to be better than anything out there," he said. "It’s a lot more selective, so it has real utility for science."

Connors said the discovery, detailed in the online early edition of the Proceedings of the National Academy of Sciences for the week of August 2, could shed light on the cause of epilepsy and seizures. Scientists suspect that a Cx36 mutation causes these common neurological conditions, which occur when the messages swapped between synapses get scrambled. Meanwhile, a Cx50 mutation can form cataracts in mice.

"Electrical synapses were only discovered in the neocortex of mammals five years ago," Connors said, "so they are still a mystery. What do they control? How? When? These are big questions in neuroscience and this drug will help us answer some of them."

Conducted with scientists at Albert Einstein College of Medicine in New York and funded by the National Institutes of Health, the research offered up an intriguing secondary finding.

In rare cases, mefloquine can cause anxiety, panic attacks, depression and other psychotic side effects. Doctors have never understood why. Connors and Cruikshank said their research may hold the answer: Connexin shut-down in the brain.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>