Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA variations surprise researchers

02.08.2004


Scientists at The Hospital for Sick Children (Sick Kids), Brigham and Women’s Hospital (BWH) and Harvard Medical School (HMS) have made the unexpected discovery that significant differences can exist in the overall content of DNA and genes contained in individual genomes. These findings, which point to possible new explanations for individual uniqueness as well as why disease develops, are published in the September 2004 issue of the scientific journal Nature Genetics (available online August 1, 2004).



"Using new genome scanning technologies, we serendipitously found stretches of DNA sometimes hundreds of thousands of chemical bases (nucleotides) long that were present or absent in the genomes of healthy individuals. These large-scale copy variations, or LCVs, frequently overlap with genes and could explain why people are different," said Dr. Stephen Scherer, co-principal investigator of the study, a Sick Kids senior scientist, and an associate professor in the Department of Molecular and Medical Genetics at the University of Toronto.

"At first we were astonished and didn’t believe our results because for years we had been taught that most variation in DNA was limited to very small changes. Then we heard the Harvard group was making similar observations and ultimately we combined our data and came to the same conclusion," added Dr. Scherer.


Early information from the Human Genome Project indicated that the DNA in the genome of any two individuals is 99.9 per cent identical with the 0.1 per cent variation arising primarily from some three million single nucleotide changes scattered amongst the chromosomes. The new data from the Sick Kids and Harvard groups revealed 255 regions (comprising more than 0.1 per cent) of the genome where large chunks of DNA are present in different copy numbers between individuals. Over 50 per cent of these alterations lead to changes in gene numbers and at least 14 regions overlapped with known sites associated with human disease.

"Because these newly discovered variants exist in the genomes of healthy individuals, their presence could lead to subtle differences affecting physical or behavioural traits by influencing the expression of specific genes, but they could also predispose to future disease," said BWH’s Dr. Charles Lee, co-principal investigator and assistant professor at HMS. "For example, the most common LCV involves amylase genes. Our study shows that some people may have 10 copies of this gene while others may have as much as 24 copies of this same gene. It would be really exciting if we found that an increased copy number of these genes was associated with increased susceptibility to pancreatic diseases or cancer. This would allow us to use these LCVs as disease markers."

The information on identified LCVs has been collated into a publicly accessible database called the Genome Variation Database (http://projects.tcag.ca/variation) that will be a valuable resource for clinical genetic studies.

Other members of the research team include co-lead authors Dr. Lars Feuk, a Sick Kids postdoctoral fellow and Dr. A. John Iafrate, a postdoctoral fellow at BWH and HMS, and Miguel L. Listewnik (BWH), Patricia K. Donahoe (Massachusetts General Hospital and HMS), and Ying Qi (Sick Kids).

At Sick Kids, the research was supported by Genome Canada through the Ontario Genomics Institute, the McLaughlin Centre for Molecular Medicine, The Centre for Applied Genomics at Sick Kids, and the Sick Kids Foundation. Dr. Feuk is supported by the Swedish Medical Research Council. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

At BMH/HMS, the research was supported by the Department of Pathology at Brigham and Women’s Hospital, the Friends of the Dana-Farber Cancer Institute, a Brigham and Women’s Hospital Pathology Department training grant, and the National Institutes of Health.

Laura Greer | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>