Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researcher working to improve alternatives to equine antibiotics

23.07.2004


Antibiotics can save lives. But the increasing occurrence of antibiotic-resistant bacteria presents a number of challenges for researchers in medicine.



Veterinary medicine is no exception and Dr. Elizabeth Davis, assistant professor of equine internal medicine at Kansas State University, is working to help improve alternative methods for combating infectious diseases in horses. "In veterinary medicine and medicine in general, we’re running out of antibiotics, so we have to be extremely careful of the antibiotics we use, the duration that we use them and the species that we use them in," Davis said.

To help better prepare the horse industry for a limited number of effective antibiotics, Davis has researched the presence of antimicrobial peptides in horses. According to Davis, antimicrobial peptides are produced by the body as an immediate immunological response to pathogens and generally target and kill bacteria. Davis recently found genetic information relating to two of these peptides in horses.


The idea of stimulating the immune system to help animals efficiently and naturally fight infection is nothing new, Davis said. There are a number of commercial immune stimulants on the market, but they are rather mild and often have to be used in conjunction with antibiotics.

Specific DNA sequences found within one such stimulant are known as CpG motifs. These specific DNA sequences might be what stimulate an effective immunological response, Davis said. With hopes of helping to develop more powerful immune stimulants, Davis is examining different DNA sequences containing immunostimulatory CpG motifs to identify which sequences contain the most effective motifs.

"In effect, what we may be able to do is specifically turn on antimicrobial peptide production and other immune response factors that help ward off infection," Davis said. "What it would mean is we hope we could use shorter antibiotic therapy."

Davis said she also hopes to find which motifs are the most stimulating to equine immune cells as well as how the immune response is initiated. Such research would continue to drive the development of more effective commercial immune stimulants.

"I think we could improve on something that works well," Davis said about the commercial stimulants. "The ultimate goal would be to reduce antibiotic usage for infectious diseases. People do commonly use the commercial products, so I think there would be some interest to have something that was better."

Davis is completing her Ph.D. under the direction of Dr. Frank Blecha.

"The antimicrobial peptide cloning/sequencing work has been part of my graduate work; the immunomodulation with CpG DNA studies are my current focus," Davis said.

Elizabeth Davis | EurekAlert!
Further information:
http://www.vet.k-state.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>