Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sponge substance works well with yew derivative to thwart cancer cell proliferation

15.07.2004


A drug derived from an ocean-growing sponge teams up to enhance the performance of the yew tree derivative Taxol® (paclitaxel) in preventing the growth of cancer cells, according to research published in the July 15 issue of the journal Cancer Research. Indeed, discodermolide, a novel drug isolated from the marine sponge Discodermia dissoluta, works with paclitaxel to thwart tumor cell growth--with several times the efficacy that either drug alone exerts on proliferating cancer cells.

Studies by Mary Ann Jordan, Ph.D., a scientist at the University of California, Santa Barbara, and an international team of cancer researchers including postdoctoral fellows Stephane Honore, Ph.D., and Kathryn Kamath, Ph.D., demonstrate that the combination of the two drugs inhibited proliferation of human lung cancer cells by 41 percent. Administered alone, either discodermolide or paclitaxel prevented the cancer cell growth by only 9.6 or 16 percent, respectively. The drugs also combined to induce programmed cell death, or apoptosis, in the lung cancer cells.

"Our results indicate that Taxol® and discodermolide have the potential to improve cancer patients’ responses and reduce undesirable side effects when the two drugs are administered together," Jordan said.



The drugs, which stem from naturally occurring sources, work in concert to stabilize the assembly/disassembly process of microtubules in cells. Microtubules--lengthy polymers made up of protein bundles, called tubulin--form long, straw-like cylinders that help shape the skeletal structure within cells and also move cellular components within the cell, including vesicles, granules, organelles like mitochondria, and chromosomes. Their attachment with chromosomes, the DNA genetic material in cells, is critical for cell replication and growth. Microtubules normally exist in a state of dynamic instability, where the polymers grow rapidly--longer or shorter, depending on the need of the cells.

In this study, discodermolide and paclitaxel combined to alter the overall microtubule dynamics by 71 percent when administered together. Alone, they each reduced microtubule dynamic instability by 24 percent.

By altering the stability dynamics of microtubules, paclitaxel and discodermolide limit cancer cells ability to duplicate DNA and divide. The cells are stuck in a pre-division stage of the cell cycle called G2/M. Cancer cells that are restricted to the pre-division stage of the cell cycle cannot divide and ultimately die, thus reducing proliferation of tumor cells.

Both drugs work by binding to the microtubules. Because of their lengthy structure and the number of drug binding sites normally associated with them, microtubules are unique receptors for drugs within cells.

Paclitaxel is currently an approved therapeutic for control of cancer growth. Discodermolide is currently under study in phase one clinical studies.

Jordan is an adjunct professor and research biologist in the Molecular, Cellular, and Developmental Biology department, University of California, Santa Barbara. In the paclitaxel/discodermolide studies, she collaborated with researchers from the Universite de la Mediterranee, Marseille, France; Albert Einstein College of Medicine, Bronx, N.Y.; and the University of California, Santa Barbara, Calif. The work was supported by grants from the National Institutes of Health.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>