Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Research Could Help Disarm Deadly Viruses

07.07.2004


Taken to its ultimate outcome, the research that biology professor Dr. Steve Howard is working on could help disarm deadly retroviruses such as HIV or SARS.



Howard, associate professor of biology at Middle Tennessee State University, would be the first to advise against making that kind of quantum-leap claim. It’s much too early. But assuming that the research that led to the polio vaccine first crawled, then walked, then charted a new course for civilization itself, Howard’s discovery is more than significant.

Co-authored by Drs. J.F. Fontanari and A. Colato of the Universidade de Sao Paulo in Brazil, Howard’s study was published recently in the Physical Review Letters, the top international journal in physics.


"I became aware of a paper these two theoretical physicists published, and it turns out they were interested in some of the same questions that I had been interested in," Howard said.

Trained as a population geneticist and evolutionary biologist, Howard had always been intrigued by the process in which organisms become adapted to their environments. He was particularly interested in understanding how the process of evolution affects the relationship between disease-causing organisms and other organisms that are infected by these organisms. Research over the past several years points to a genetic base for these infections.

"There are certain sequences of DNA in these viruses and other disease-causing organisms that enable them to infect humans or other species that have certain sequences of DNA. In other words, there is a lock-and-key mechanism in determining the genetic basis to infections," he explained.

"What we’re interested in is understanding the potential for random mutations to accumulate in the genetic material of viruses to the point where there are so many mistakes in the DNA or RNA that they can no longer reproduce or maintain themselves."

Howard said that determining the expected rates at which these mutations could accumulate all distills down to a math problem. It was with this realization that the three researchers linked up and discovered they could make more headway by combining their efforts.

"We used a mathematical approach—known as ’branching process theory’—to generate a theoretical prediction concerning the rate at which random mutations could accumulate in the genetic material of viruses like HIV," Howard continued. "The result we got was extraordinary. What we found was that under certain conditions, the rates that these mistakes can accumulate is actually accelerated by the process of natural selection. This is surprising, as natural selection typically leads to a reduction in the number of mutations. … The implication is that we could accelerate the rate at which these virus populations go extinct."

If viruses like HIV accumulate a sufficient number of these genetic mistakes, then they will cease to function. Howard compared the genetic corruption to making changes on a blueprint for a building.

"How many times would those changes improve the building? he posed. "Not very often."

Howard said he hopes that other biologists will get involved and do research on this acceleration process. Careful not to overstate the ramifications, he emphasized again how important this step is in the entire process of speeding up viral degeneration.

"What we show is that during that phase where things are transferred—at the point when they start to invade your body—that’s where this process of acceleration potentially can take place. The question is, how can we take advantage of that?"

Emerging new diseases have scientists concerned, Howard noted. Many diseases are jumping boundaries. SARS somehow made the leap beyond China, its apparent point of origin.

"Viruses replicate quickly, and new strains can evolve like wildfire. … Viruses can also adapt quickly to changes in the environment."

Howard said he and his colleagues in Brazil will continue to work together.

"We have just obtained a solution for the problem in situations where population size fluctuates," he added. "I am now writing up the results for publication."

| newswise
Further information:
http://www.mtsu.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>