Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting genes with viruses to select populations of nerve cells

28.05.2004


Yale scientists have discovered a new way of illuminating MCH neurons, which may play an important role in regulating appetite and body weight, by using a virus that has been genetically engineered so that it cannot replicate.

MCH neurons are located in the hypothalamus, a homeostatic regulatory center of the brain. Because these nerve cells look like any other brain cell, it has been difficult to study their cellular behavior previously.

The researchers took the "safe" virus, known as an adeno-associated virus, and injected it into the brain as a gene shuttle vector, which then triggers the expression of a jellyfish gene that glows green in the MCH neurons.



The principal investigator, Anthony van den Pol, professor of neurosurgery at Yale School of Medicine, said tracking the virus in the brain makes it possible to observe what viruses do best -- go into target cells and initiate gene expression.

"By creating viruses unable to follow their normal replication agenda, we can then harness the virus as an important research tool," van den Pol said. "Viruses with altered genetic codes also have substantial value for the potential treatment of a number of neurological diseases where a gene could be selectively targeted to one defective cell type."

He said the gene could be one that codes for a protein that enhances neuron survival, that opens or closes an ion channel, conscripts the nerve cell to synthesize a new neurotransmitter, or generates a toxin selectively in a brain tumor.

Van den Pol and his colleagues first exchanged a viral gene promoter for a neurotransmitter-selective promoter in the virus so that although the virus may infect many cells, it only turns cells green if the cells make MCH. The scientists then used thin glass pipettes to record the electrophysiological characteristics of these rare nerve cells, finding them by their green glow.

Van den Pol said scientists have struggled to identify what particular cell type is being examined within the brain because the brain consists of hundreds of cell types within millions of cells. Transgenic mice can be generated that express a reporter gene in restricted subsets of neurons, allowing recognition of live cells, but the virus approach may be simpler, faster and less costly, he said.

"When these adeno-associated viruses are injected into the brain, they initiate expression of a novel gene that continues for over a year without doing any detectable damage to the brain," he said.


Co-authors included Prabhat Ghosh and Claudio Acuna of Yale and Reed Clark from Ohio State University.

Citation: Neuron, Vol. 42: 635-652 (May 27, 2004)

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>