Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small, Cold, and Hungry: Ultra-Small Microbes from a 120,000-Year-Old Greenland-Glacier Ice Sample

27.05.2004


Material from a 120,000-year-old Greenland Glacier ice sample showing micro-microbes (small white oblong forms) and larger materials.


One of the novel micro-microbes isolated from a 120,000-year-old Greenland Glacier ice sample


The discovery of millions of micro-microbes surviving in a 120,000-year-old ice sample taken from 3,000 meters below the surface of the Greenland glacier will be announced by Penn State University scientists on 26 May 2004 at the General Meeting of the American Society for Microbiology in New Orleans, Louisiana. The discovery is significant because it may help to define the limits for life on Earth as well as elsewhere in the universe, such as on cold planets like Mars.

According to Penn State researchers Vanya I. Miteva, research associate, and Jean E. Brenchley, professor of microbiology and biotechnology, the majority of the microbes they discovered in an ice-core sample taken from the glacier were less than 1 micron in size--smaller than most commonly known bacteria, which range from 1 to 10 microns. In addition, a large portion of the cells appeared to be even smaller and passed through filters with 0.2-micron pores. The scientists are interested in understanding how microbial life can be preserved in polar ice sheets for hundreds of thousands of years under stresses that include subzero temperatures, desiccation, high pressures, and low oxygen and nutrient concentrations. Because the ice was mixed with the ancient permafrost at the bottom of the glacier, the microbes could have been trapped there for perhaps millions of years.

"We are particularly interested in the formation of ultra-small cells as one possible stress-survival mechanism, whether they are starved minute forms of known normal-sized microbes or intrinsically dwarf novel organisms, and also whether these cells are able to carry on metabolic processes while they are so highly stressed," Miteva says. Physiological changes that accompany the reduction of a cell’s size may allow it to become dormant or to maintain extremely low activity with minimal energy.



"Many of these ice-core microbes are related to a variety of ultra-small microorganisms from other cold environments that have been shown to use different carbon and energy sources and to be resistant to drying, starvation, radiation, and other stress factors. Their modern relatives include the model ultra-micro bacterium Sphingopyxis alaskensis, which is abundant in cold Alaskan waters," Brenchley reports. She and Miteva are in the process of closely examining all the microbes they found in order to determine the identities and diversity of the species and to look for ones with novel functions.

The researchers used a variety of methods including repeated sample filtrations, electron microscopy, and a modified technique of flow cytometry to quickly reveal the number of cells and to estimate their different sizes, DNA content, and other characteristics. Miteva and Brenchley discovered cells with many different shapes and sizes, including a large percentage that were even smaller than filter-pore sizes of only 0.2 microns. "It appears that these ultra-small microbes often are missed in research studies because they pass through the finest filters commonly used to collect cells for analysis," Miteva says.

"Scientists believe these dwarf cells belong to the ’uncultured majority’ because they are among the 99 percent of all microbes on Earth that have never been isolated and cultured for study. Obtaining such ’isolates’ is necessary in order to describe a new organism, study its cell size, examine its physiology, and assess its ecological role. We now know just the tip of the iceberg of all the microbes that exist on Earth, and it generally is believed that a large portion of these unknown microbes are very small in size," Miteva says.

"A major challenge is to develop novel approaches for growing some of these previously unculturable organisms," Brenchley says. "At present, no single established protocol exists and little is known about the recovery of these stressed and possibly damaged cells from a frozen environment that subjects them to severe conditions for long periods." Some of the cells that Miteva and Brenchley were successful in cultivating required special conditions and up to six months to form initial colonies. The researchers discovered that these colonies grew more rapidly during further cultivation and that most continued to form predominantly small cells.

"Our study of the abundance, viability, and identity of the ultra-small cells existing in the Greenland ice is relevant to discovering how small life-forms can be; how cells survive being small, cold, and hungry; and what new tricks we need to develop in order to cultivate these small cells," Miteva says. "This study is part of the continuing quest by microbiologists to overcome the current limitations of our methods and to answer the big question, ’What new microbes are out there and what are they doing?’"


This research was supported by the Department of Energy (Grant DE-FG02-93ER20117) and the Penn State Astrobiology Center (NASA-Ames Cooperative Agreement No. NCC2-1057).

CONTACTS before 22 May and after 27 May:
Vanya I. Miteva: (+1)814-865-3330 (lab phone and fax), vim1@psu.edu
Jean E. Brenchley: (+1)814-865-3330 (lab phone and fax), jeb7@psu.edu
Barbara Kennedy (PIO): (+1)814-863-4682, science@psu.edu

CONTACTS from 22 May to 27 May:
Press Room at American Society for Microbiology meeting: 504-670-4240
Barbara Kennedy (PIO): (+1)814-863-4682, science@psu.edu

Barbara Kennedy | Penn State
Further information:
http://www.science.psu.edu/alert/Brenchley5-2004.htm

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>