Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Small, Cold, and Hungry: Ultra-Small Microbes from a 120,000-Year-Old Greenland-Glacier Ice Sample


Material from a 120,000-year-old Greenland Glacier ice sample showing micro-microbes (small white oblong forms) and larger materials.

One of the novel micro-microbes isolated from a 120,000-year-old Greenland Glacier ice sample

The discovery of millions of micro-microbes surviving in a 120,000-year-old ice sample taken from 3,000 meters below the surface of the Greenland glacier will be announced by Penn State University scientists on 26 May 2004 at the General Meeting of the American Society for Microbiology in New Orleans, Louisiana. The discovery is significant because it may help to define the limits for life on Earth as well as elsewhere in the universe, such as on cold planets like Mars.

According to Penn State researchers Vanya I. Miteva, research associate, and Jean E. Brenchley, professor of microbiology and biotechnology, the majority of the microbes they discovered in an ice-core sample taken from the glacier were less than 1 micron in size--smaller than most commonly known bacteria, which range from 1 to 10 microns. In addition, a large portion of the cells appeared to be even smaller and passed through filters with 0.2-micron pores. The scientists are interested in understanding how microbial life can be preserved in polar ice sheets for hundreds of thousands of years under stresses that include subzero temperatures, desiccation, high pressures, and low oxygen and nutrient concentrations. Because the ice was mixed with the ancient permafrost at the bottom of the glacier, the microbes could have been trapped there for perhaps millions of years.

"We are particularly interested in the formation of ultra-small cells as one possible stress-survival mechanism, whether they are starved minute forms of known normal-sized microbes or intrinsically dwarf novel organisms, and also whether these cells are able to carry on metabolic processes while they are so highly stressed," Miteva says. Physiological changes that accompany the reduction of a cell’s size may allow it to become dormant or to maintain extremely low activity with minimal energy.

"Many of these ice-core microbes are related to a variety of ultra-small microorganisms from other cold environments that have been shown to use different carbon and energy sources and to be resistant to drying, starvation, radiation, and other stress factors. Their modern relatives include the model ultra-micro bacterium Sphingopyxis alaskensis, which is abundant in cold Alaskan waters," Brenchley reports. She and Miteva are in the process of closely examining all the microbes they found in order to determine the identities and diversity of the species and to look for ones with novel functions.

The researchers used a variety of methods including repeated sample filtrations, electron microscopy, and a modified technique of flow cytometry to quickly reveal the number of cells and to estimate their different sizes, DNA content, and other characteristics. Miteva and Brenchley discovered cells with many different shapes and sizes, including a large percentage that were even smaller than filter-pore sizes of only 0.2 microns. "It appears that these ultra-small microbes often are missed in research studies because they pass through the finest filters commonly used to collect cells for analysis," Miteva says.

"Scientists believe these dwarf cells belong to the ’uncultured majority’ because they are among the 99 percent of all microbes on Earth that have never been isolated and cultured for study. Obtaining such ’isolates’ is necessary in order to describe a new organism, study its cell size, examine its physiology, and assess its ecological role. We now know just the tip of the iceberg of all the microbes that exist on Earth, and it generally is believed that a large portion of these unknown microbes are very small in size," Miteva says.

"A major challenge is to develop novel approaches for growing some of these previously unculturable organisms," Brenchley says. "At present, no single established protocol exists and little is known about the recovery of these stressed and possibly damaged cells from a frozen environment that subjects them to severe conditions for long periods." Some of the cells that Miteva and Brenchley were successful in cultivating required special conditions and up to six months to form initial colonies. The researchers discovered that these colonies grew more rapidly during further cultivation and that most continued to form predominantly small cells.

"Our study of the abundance, viability, and identity of the ultra-small cells existing in the Greenland ice is relevant to discovering how small life-forms can be; how cells survive being small, cold, and hungry; and what new tricks we need to develop in order to cultivate these small cells," Miteva says. "This study is part of the continuing quest by microbiologists to overcome the current limitations of our methods and to answer the big question, ’What new microbes are out there and what are they doing?’"

This research was supported by the Department of Energy (Grant DE-FG02-93ER20117) and the Penn State Astrobiology Center (NASA-Ames Cooperative Agreement No. NCC2-1057).

CONTACTS before 22 May and after 27 May:
Vanya I. Miteva: (+1)814-865-3330 (lab phone and fax),
Jean E. Brenchley: (+1)814-865-3330 (lab phone and fax),
Barbara Kennedy (PIO): (+1)814-863-4682,

CONTACTS from 22 May to 27 May:
Press Room at American Society for Microbiology meeting: 504-670-4240
Barbara Kennedy (PIO): (+1)814-863-4682,

Barbara Kennedy | Penn State
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>