Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic barrier to self-pollination identified


Many flowering plants prevent inbreeding and increase genetic diversity by a process called self-incompatibility, in which pollination fails to set seed if the pollen is identified as its own by the pistil. A research team, led by Teh-hui Kao, Professor of Biochemistry and Molecular Biology at Penn State, has announced, in a paper published in the May 20 issue of Nature, the discovery of a gene of petunias that controls pollen function in self-incompatibility. This discovery completes a critical missing link in the understanding of how self-incompatibility works. Ten years ago, Kao announced, in another paper published in Nature, the identification of the gene, called the S-RNase gene (S for self-incompatibility), that controls pistil function in self-incompatibility. "This male component turned out to be much more elusive than the pistil component," says Kao. "Our team, as well as others, has worked for the past ten years to find it." The recently identified gene, named PiSLF (for Petunia inflata S-locus F-box), encodes a new member of a large family of F-box proteins that are known to mediate protein degradation in diverse organisms, including animals, plants and yeast.

While a species may have as many as 50 or 60 different S-alleles, each plant has only two of them, one inherited from each parent. An allele is one of a number of possible variants of a particular gene; for example, two alleles exist for each of the three genes that determine eye color in humans. Pollen grains are haploid, meaning that they contain only a single set of chromosomes, and thus each pollen grain contains only one of the two S-alleles of the parent plant. The pistil, on the other hand, is diploid, meaning that it has two sets of chromosomes (one from each parent) and therefore has both S-alleles of the parent plant. During pollination, if the S-allele of the pollen does not match either of the two S-alleles in the pistil, the pollen will germinate on the surface of the pistil to produce pollen tubes, which will then grow through the pistil to the ovary to effect fertilization. However, if the S-allele of the pollen matches either of the two S-alleles in the pistil, growth of the pollen tube is stopped about one third of the way to the ovary, preventing fertilization. Triggering this self-incompatibility response requires an interaction between the product of an S-allele produced in pollen and the product of a genetic counterpart produced in the pistil. To identify the pollen component in self-incompatibility, the team examined the DNA sequence of a chromosomal region containing the S2-allele of the S-RNase gene (the previously identified pistil component for plants containing the specific S-locus allele that is labeled S2). "The gene controlling the pollen function must be very closely linked to the S-RNase gene to prevent recombination," says Kao. "Otherwise, recombination between these two genes would cause the breakdown of self-incompatibility, which has never been observed in nature"

After identifying the PiSLF gene, located approximately 161 kb from the S-RNase gene, Kao’s team had to demonstrate that the gene was indeed the pollen component of self-incompatibility. "Other labs have found similar genes in the vicinity of the S-RNase gene in various other species" he says. "But proximity alone is insufficient to show the relationship." They took advantage of a phenomenon known as competitive interaction to demonstrate the function of the PiSLF gene in self-incompatibility. It has been known for some time that if pollen has two different S-alleles (which could result when the chromosomal region containing the pollen S-allele is duplicated in a plant), the pollen fails to function in self-incompatibility and thus cannot be rejected by any plant pistil. However, pollen with two identical S-alleles (again resulting from duplication of the pollen S-allele) remains functional in self-incompatibility. The team carried out three sets of experiments. In one set, the S2-allele of PiSLF was introduced into plants of S1S1 genotype – plants containing two identical S-locus genes of a type labeled S1 - via standard plant transformation techniques. For each transgenic plant generated, half of the pollen produced contained the endogenous (originating from within the plant) pollen S1-allele plus the PiSLF2 transgene (a gene that is introduced from a source outside the plant), whereas the other half only contained the endogenous pollen S1-allele. If PiSLF is the pollen component, the pollen that contained PiSLF2 should contain two different pollen S-alleles, S1 from the endogenous gene and S2 from the transgene, and based on competitive interaction, should fail to function in self-incompatibility. However, the pollen that contained only the endogenous pollen S1-allele should function normally. Thus, the prediction was that the transgenic plants would set seeds upon self-pollination (i.e., becoming self-compatible) and that all the resulting progeny should inherit the PiSLF2 transgene. The results from this set of experiments, as well as from two other sets using different genotypes of plants as recipient of PiSLF2, were completely in agreement with the prediction based on competitive interaction and based on the assumption that PiSLF is the pollen component.

The team that made this discovery consisted of five graduate students, Paja Sijacic, Xi Wang, Andrea L. Skirpan, Yan Wang and Peter E. Dowd, and a postdoctoral scholar, Andrew G. McCubbin. In addition, a research scientist, Shihshieh Huang, at Monsanto (a former graduate student of Kao’s group) participated in the project as a collaborator.

This discovery could have commercial application for hybrid seed production in crop plants, such as corn and soy bean, that have lost self-incompatibility. Raising hybrid seed has been one of the major goals of horticultural and agricultural practice, because hybrid plants are more productive (due to hybrid vigor) and more uniform in quality than plants derived from self-pollination or random pollination. To raise hybrid seed, self-pollination and sib-pollination (pollination by a plant of the same hybrid) must be circumvented. One method is hand emasculation of the line used as female parent, which is then naturally cross-pollinated by pollen from the line serving as male parent and planted in an adjacent row. However, this process is very labor intensive and invariably expensive. If the crop plants can be made self-incompatible by the introduction of the genes controlling self-incompatibility, then all seeds produced will be hybrids resulting from cross-pollination between two different lines. This would facilitate the production and increase the yield of hybrid seed and, at the same time, reduce the labor costs.

Barbara K. Kennedy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>