Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gas, Viagra and sex in plants – researchers at the Instituto Gulbenkian de Ciência have found a link

11.05.2004


Viagra affects growth of the male sex organ of plants, by intensifying the effect of nitric oxide during plant fertilization. This discovery, made by the Plant Development team at the Instituto Gulbenkian de Ciência (IGC), in Portugal, will be published in Development, in June. The study, led by José Feijó, takes a step further in understanding fertilization in plants, a complex process but an absolutely essential one for the survival and evolution of species.



Pollen grains, which contain the plants’ male gametes (sperm cells), are carried from the male organ of the flower (the stamen) to the female organ (the pistil). Here the pollen germinates and grows a pollen tube, which extends and is guided to the ovary, where it releases the sperm. The sperm fuse with the egg cells, giving rise to an embryo, part of the seed. For many years now, scientists have been trying to unravel the mechanisms that guide the pollen tube along the long route to reach the ovary.

The Plant Development group of the IGC, now shows, for the first time, that nitric oxide (NO), a well-known gas that animal cells use as a hormone, influences the speed and direction of growth of lily pollen tubes. Upon encountering a point source of NO, lily pollen tubes slow down, almost stop, make a 90 degree turn, and start growing again.


The IGC researchers bathed the pollen tubes in several enzyme inhibitors to identify the messenger molecule, inside the cell, that mediates the response to NO, sensed outside the cell. Of the inhibitors tested, only Viagra intensified the effect of NO, to the point where the pollen tubes made a 180 degree turn. Viagra is known to cause build up of cyclic GMP (cGMP) inside a cell; the researchers thus conclude that NO acts on the pollen tubes via this small messenger molecule.

These findings underscore how fundamental biological processes, such as fertilization, are conserved in their basic mechanisms, from plants to animals: Viagra, a drug that affects signalling inside the cell, has similar effects on male sex organs in animals and in plants.

There is general agreement amongst plant scientists that the pollen tube is guided by mechanical and chemical signals. The new findings of the IGC researchers take the search for a unifying theory of pollen tube guidance a step further. The scientists suggest that, in the plant, NO is released by the female organ and acts as a signpost to make the pollen tube change direction at the right place along the route.

According to José Feijó, there is still some way to go to fully understand how NO acts in plants. This gas is full of surprises, both in animals and in plants. In animals, amongst many other functions, NO controls blood pressure and acts as a messenger between cells of the nervous system. Nitroglycerine alleviates the symptoms of cardiac arrest because it causes cells to release NO.

Ana Coutinho | alfa
Further information:
http://www.igc.gulbenkian.pt

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>