Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers invent way to determine optimal conditions for spinal cord nerve regen in lab animals


Mayo Clinic researchers have created a method for measuring the growth of new spinal cord nerve fibers in rats, an advance that allows them to quickly determine nerve regeneration rate and what variables in the nerve-growth environment best support it.
The finding is important because it is a first step in laboratory animal models that will help scientists refine and improve nerve repair and regrowth in spinal cord injuries. While much basic science remains to be completed, this path of discovery could possibly lead one day to new therapies to reverse paralysis in human patients who have suffered complete spinal cord injury. The findings will be presented April 30 in San Francisco at the American Academy of Neurology annual meeting.

Significance of the Mayo Clinic Finding

This new regrowth measurement method and evaluating conditions of the spinal microenvironment in which regrowth occurs extend earlier Mayo Clinic research. In the earlier research the team successfully regenerated healthy spinal nerve endings of paralyzed rats using an implantable scaffolding. The scaffolding is referred to as a "biodegradable spinal graft."

Mayo Clinic’s experimental scaffolding consists of several innovations. It uses polymer chemistry to create a biodegradable material that can be molded, through microfabrication techniques, to make implantable, trellis-like scaffolding that both supports and guides new nerve fibers. It does this by providing channels through which the axons (nerve endings) grow.

The new measurement method shows that the scaffolding not only supports axon regeneration when seeded with cells that stimulate regrowth, but that it can quantify axon growth under different experimental conditions. "Knowing what conditions favor regrowth -- or retard it -- enables researchers to design a maximally efficient system for achieving the best regrowth," says Anthony Windebank, M.D., neurologist, molecular neuroscientist and joint principal investigator.

"We feel that this research program will make a contribution toward a solution to the spinal cord injury problem," adds Michael Yaszemski, M.D., Ph.D., orthopedic spinal surgeon and chemical engineer.

The determination of the effectiveness of the scaffolding is important because other surgical attempts to regenerate nerve growth do not direct and support the growth, so crucial connections needed to restore the damaged nerve are not always made. Without these connections, electrical impulses that coordinate movement cannot be conducted and paralysis cannot be reversed.


Both synthetic and biological axon growth-guidance channels have been studied. Biological channels usually consisted of grafts of nerves from the peripheral nervous system. Synthetic channels included various biocompatible materials. The channels have been filled with different types of cells to determine the most viable "supporting cells" for creating nerve regrowth. These include: Schwann cells, olfactory ensheathing glia, neural stem cells and others.

But researchers lacked an effective way to compare the ability of different cell types to support axonal regeneration. Then they discovered that the scaffolding also can be used as a kind of "measuring stick" to quantify nerve regrowth.

The Experiment

To test this idea, researchers loaded 3 mm-long scaffolds with several different types of supporting cells to generate new nerves. They then surgically inserted each into identical 3 mm-long gaps made in rat spinal cords. One month after implantation, four to six spinal cords and scaffolds were harvested from the rats, and systematically analyzed and compared, from nose to tail section. Other conditions were altered in the regrowth environment and tracked to determine their effects on nerve regrowth. A researcher with no knowledge of which cell type was in each scaffold, or which environment had been altered, then counted axon regrowth.

Results and Conclusions

Results varied. Some cell types supported no growth at the midpoint of the scaffold; others supported considerable growth. Researchers conclude that the biodegradable particular scaffolds can successfully be seeded with certain cells and support axon regrowth throughout the length of the scaffold. In addition, they believe axon counting after one month is an effective way to distinguish the effects of alterations in the microenvironment of axon regeneration. These findings will help lead researchers to the next step -- optimizing conditions of the microenvironment in which nerve regrowth occurs. Further studies will then be needed to determine if nerve function improves with optimal growth.

John Murphy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>