Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crowding stem cells’ personal space directs their future


Johns Hopkins scientists report that restricting the shape and personal space of human stem cells from bone marrow is more important than any known molecular signal in determining the cell type they become.

Understanding the signals that tell stem cells what type of cell to become, and then harnessing those cues to get a single desired cell type, is key to any effort to use these or more primitive embryonic stem cells to regenerate or repair damaged tissue.

In the April issue of Developmental Cell, the Hopkins researchers report that mesenchymal (pronounced mez-EHN-kih-mal) stem cells forced to be spherical efficiently transform into precursors to fat cells, while those allowed to stretch and flatten move closer to becoming bone cells. These stem cells can naturally become fat cells, cartilage, bone cells, or smooth, cardiac or skeletal muscle.

"The types of cells that come from mesenchymal stem cells all have shapes specific to their functions, so we wondered whether the stem cells’ shapes could actually direct their differentiation," says Christopher Chen, M.D., Ph.D., an assistant professor of biomedical engineering at Johns Hopkins. "The answer is that shape is critical to the stem cells’ differentiation. It can actually induce molecular signals known to encourage fat cell or bone cell development and causes complete, uniform differentiation."

In the first week of laboratory studies, about 45 percent of stem cells forced to be round moved toward fat cell development, and 50 percent of spread-out cells got closer to being bone cells. By four weeks, all cells had followed the path dictated by their shape, Chen says, making shape the most powerful factor in whether human mesenchymal stem cells become fat or bone in the lab.

Ever since these stem cells were first isolated in the late 1990s, scientists have recognized that which cell type they become depends on the density at which they are grown in the lab. But while sparse growth was recommended to get bone cells, and congested growth was recommended to increase the amount of fat cells, no one knew why.

To really understand whether it was the cells’ shape or some aspect of their neighbors that directed differentiation, M.D./Ph.D. candidate Rowena McBeath used a special technique, developed in Chen’s lab, that restricts individual cells to small spaces without requiring cellular neighbors to do the crowding.

The technique, called micropatterning, uses technology that was initially developed for the semiconductor industry. Using a rubber-like material, stamps are created that each have a specific pattern of microscopic squares, each coated with a protein that attracts cells (fibronectin). The stamp is then used to transfer the pattern to a surface, resulting in "islands" to which cells stick. The researchers can precisely control the size of the islands, and consequently whether cells will form a ball or stretch out.

"With this tool we can restrict the ability of individual cells to spread, and we can do so thousands of cells at a time," says Chen.

McBeath’s experiments showed that mesenchymal stem cells on the small islands balled up and, biologically speaking, moved closer to becoming fat cells, while those on large islands stretched out and got closer to becoming bone cells. In subsequent experiments, she proved that shape can’t be overcome by known molecular signals traditionally used to encourage mesenchymal stem cells to differentiate into either fat or bone cell precursors.

"Stretching out pushes the stem cells toward becoming bone cell precursors, and no collection of fat-encouraging signals was able to subsequently overcome the early effect of shape," says McBeath, an M.D./Ph.D. candidate in the Cellular and Molecular Medicine graduate program.

McBeath also showed that a molecule called RhoA, known to be activated when cells spread out, can mimic the effect of shape on the stem cells’ differentiation. Perpetually active RhoA caused the stem cells to move toward bone, while inactive RhoA pushed them toward becoming fat cells, even when exposed to factors known to encourage differentiation toward the opposite cell type.

"Remarkably, when the cells were simply grown in regular dishes in the lab, RhoA’s activation or inactivation overrode signals usually used to direct their growth toward fat or bone," says McBeath. "But altering RhoA activity couldn’t force a round cell to become a bone precursor, or a spread cell to become a fat cell on our micropatterns."

However, she discovered that activating the enzyme RhoA kinase or ROCK, which is turned on by RhoA, caused even balled cells to differentiate toward bone. On April 8, in recognition of her work, McBeath received the Nupur Dinesh Thekdi Research Award as part of Hopkins’ 27th annual Young Investigators’ Day.

Next, the researchers will work on figuring out exactly how shape dictates the stem cells’ futures and what role ROCK and RhoA play in the process.

Authors on the report are McBeath, Chen, Dana Pirone, Celeste Nelson and Kiran Bhadriraju, all of Johns Hopkins. The research was funded by the National Institute of General Medical Sciences, the National Institutes of Health’s Medical Scientist Training Program, the Ruth L. Kirschstein National Research Service Award, and The Whitaker Foundation.

Joanna Downer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>