Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crowding stem cells’ personal space directs their future

19.04.2004


Johns Hopkins scientists report that restricting the shape and personal space of human stem cells from bone marrow is more important than any known molecular signal in determining the cell type they become.



Understanding the signals that tell stem cells what type of cell to become, and then harnessing those cues to get a single desired cell type, is key to any effort to use these or more primitive embryonic stem cells to regenerate or repair damaged tissue.

In the April issue of Developmental Cell, the Hopkins researchers report that mesenchymal (pronounced mez-EHN-kih-mal) stem cells forced to be spherical efficiently transform into precursors to fat cells, while those allowed to stretch and flatten move closer to becoming bone cells. These stem cells can naturally become fat cells, cartilage, bone cells, or smooth, cardiac or skeletal muscle.


"The types of cells that come from mesenchymal stem cells all have shapes specific to their functions, so we wondered whether the stem cells’ shapes could actually direct their differentiation," says Christopher Chen, M.D., Ph.D., an assistant professor of biomedical engineering at Johns Hopkins. "The answer is that shape is critical to the stem cells’ differentiation. It can actually induce molecular signals known to encourage fat cell or bone cell development and causes complete, uniform differentiation."

In the first week of laboratory studies, about 45 percent of stem cells forced to be round moved toward fat cell development, and 50 percent of spread-out cells got closer to being bone cells. By four weeks, all cells had followed the path dictated by their shape, Chen says, making shape the most powerful factor in whether human mesenchymal stem cells become fat or bone in the lab.

Ever since these stem cells were first isolated in the late 1990s, scientists have recognized that which cell type they become depends on the density at which they are grown in the lab. But while sparse growth was recommended to get bone cells, and congested growth was recommended to increase the amount of fat cells, no one knew why.

To really understand whether it was the cells’ shape or some aspect of their neighbors that directed differentiation, M.D./Ph.D. candidate Rowena McBeath used a special technique, developed in Chen’s lab, that restricts individual cells to small spaces without requiring cellular neighbors to do the crowding.

The technique, called micropatterning, uses technology that was initially developed for the semiconductor industry. Using a rubber-like material, stamps are created that each have a specific pattern of microscopic squares, each coated with a protein that attracts cells (fibronectin). The stamp is then used to transfer the pattern to a surface, resulting in "islands" to which cells stick. The researchers can precisely control the size of the islands, and consequently whether cells will form a ball or stretch out.

"With this tool we can restrict the ability of individual cells to spread, and we can do so thousands of cells at a time," says Chen.

McBeath’s experiments showed that mesenchymal stem cells on the small islands balled up and, biologically speaking, moved closer to becoming fat cells, while those on large islands stretched out and got closer to becoming bone cells. In subsequent experiments, she proved that shape can’t be overcome by known molecular signals traditionally used to encourage mesenchymal stem cells to differentiate into either fat or bone cell precursors.

"Stretching out pushes the stem cells toward becoming bone cell precursors, and no collection of fat-encouraging signals was able to subsequently overcome the early effect of shape," says McBeath, an M.D./Ph.D. candidate in the Cellular and Molecular Medicine graduate program.

McBeath also showed that a molecule called RhoA, known to be activated when cells spread out, can mimic the effect of shape on the stem cells’ differentiation. Perpetually active RhoA caused the stem cells to move toward bone, while inactive RhoA pushed them toward becoming fat cells, even when exposed to factors known to encourage differentiation toward the opposite cell type.

"Remarkably, when the cells were simply grown in regular dishes in the lab, RhoA’s activation or inactivation overrode signals usually used to direct their growth toward fat or bone," says McBeath. "But altering RhoA activity couldn’t force a round cell to become a bone precursor, or a spread cell to become a fat cell on our micropatterns."

However, she discovered that activating the enzyme RhoA kinase or ROCK, which is turned on by RhoA, caused even balled cells to differentiate toward bone. On April 8, in recognition of her work, McBeath received the Nupur Dinesh Thekdi Research Award as part of Hopkins’ 27th annual Young Investigators’ Day.

Next, the researchers will work on figuring out exactly how shape dictates the stem cells’ futures and what role ROCK and RhoA play in the process.

Authors on the report are McBeath, Chen, Dana Pirone, Celeste Nelson and Kiran Bhadriraju, all of Johns Hopkins. The research was funded by the National Institute of General Medical Sciences, the National Institutes of Health’s Medical Scientist Training Program, the Ruth L. Kirschstein National Research Service Award, and The Whitaker Foundation.

Joanna Downer | EurekAlert!
Further information:
http://www.developmentalcell.com
http://www.hopkinsmedicine.org/press/2003/JANUARY/030127.HTM

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>