Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new cloning technique that dramatically shortens the search for genes

31.03.2004


A single strand of plant or animal DNA may contain tens of thousands of genes, each programmed to produce a specific protein essential for the growth or survival of the organism. The challenge for geneticists is to isolate individual genes and determine their function – a painstaking process often requiring years of laboratory trial and error.

Now an international research team has discovered a technique that dramatically streamlines this process for certain kinds of genes. Developed by scientists at Stanford University and Britain’s John Innes Centre, the new procedure could enable scientists to identify specific genes in a matter of months, not years. The technique, known as transcript-based cloning, is described in the March 30 edition of the Proceedings of the National Academy of Sciences (PNAS).

"We believe that this method represents a significant breakthrough in gene cloning," wrote the authors of the PNAS study.



"The greatest impact of this technology is likely to be on plants with large and complex genomes, including most crop species," added Sharon R. Long, the William C. Steere, Jr.–Pfizer Inc. Professor in Biological Sciences at Stanford and co-author of the study. Long, who also serves as dean of Stanford’s School of Humanities and Sciences, is an authority on bacterial and plant molecular biology. She and her colleagues used the new cloning technique to isolate and identify a gene in the DNA of Medicago truncatula, or barrel medic – a member of the legume family that is closely related to alfalfa, beans and peas.

"Over the course of six months, we completed what took another group several years to complete, and we identified a pretty cool gene to boot," said Stanford postdoctoral fellow Raka M. Mitra, lead author of the PNAS study. "We think this technology will be applicable to other species and hope that it increases the pace of biological research on the whole."

Reverse genetics

Medicago DNA contains thousands of genes, and using traditional methods to figure out what each one does is a time-consuming process. "The standard approach used by plant geneticists – known as gene cloning – involves breaking down the system in a very controlled way, and then hunting down what’s broken," Mitra explained.

This process begins by randomly zapping thousands of plant seeds with radiation, then growing the exposed seeds in a lab. The goal is to raise a mutant plant with an obvious physical mutation, then search through the plant’s DNA until the mutated gene of interest is identified. For example, if researchers wanted to find the genes responsible for normal root growth, they would look for a mutant plant with defective roots and then conduct an exhaustive analysis of the plant’s DNA until they located the defective genes that caused the damage.

"Gene cloning in M. truncatula can take three to five years, in part because it requires the cross-fertilization of two generations of plants," Mitra said. "I wondered if we could circumvent this laborious hunt for genes. I started from the premise that mutated genes produce mutated proteins – and may even prevent the production of the protein entirely."

In healthy plant and animal cells, protein production begins with the gene – a short stretch of DNA made up of chemicals arranged in a specific sequence that contains the instructions for building the protein. Those instructions are copied from the DNA onto a molecule of RNA in a process called transcription. The RNA copy, or transcript, then moves to another part of the cell, where it is used as a template to manufacture the protein.

Mutated genes, however, carry faulty instructions that produce defective copies of RNA, which the cell tries to eliminate as quickly as possible – a fact that led Mitra and her colleagues to predict that defective RNA would only show up in very low concentrations in mutated cells.

But would the reverse also be true? If a cell produces low quantities of an RNA transcript, does that mean the RNA is the defective product of a damaged gene? If so, researchers could streamline the entire gene-identification process by using reverse genetics. First, they would look for RNAs that occur in low concentrations and determine the chemical sequence of those RNA molecules, then use that information to locate the matching gene on the plant’s DNA.

Nitrogen fixation

In the PNAS experiment, Mitra and her coworkers used their new transcript-based cloning technique to identify a plant gene that plays an important role in the production of usable nitrogen for plants and animals. All living things need nitrogen to make proteins. Unfortunately, nitrogen gas, which makes up nearly 80 percent of the atmosphere, is unusable by plants and animals.

However, there are soil-dwelling bacteria that transform atmospheric nitrogen into a compound that plants can absorb in their roots and then convert into proteins – a process called nitrogen fixation. Animals, in turn, get their primary source of nitrogen from plants, which makes bacterial nitrogen fixation essential to all animal – and human – life.

"Our lab has a particular goal – to identify the genes that allow plants to establish beneficial symbiosis for nitrogen fixation, which is also a key to sustainable agriculture," Long noted. As part of that effort, she and her colleagues have been studying the complex chemical signaling that occurs between nitrogen-fixing bacteria and plants. Researchers have discovered that Medicago and other legumes allow bacteria to invade their roots and take up residence in tumor-like organs called nodules.

"This relationship is mutually beneficial," Mitra explained. "The bacteria benefit because they are enclosed in a protective environment – the nodule – where they’re fed sugars from the plant. The plant benefits because the bacteria convert nitrogen from the air into ammonia, which the plant uses to make proteins."

Exactly how legumes and bacteria communicate remains something of a mystery. "For unknown reasons, within minutes of recognizing the bacterial chemical signal, calcium levels in the root cells of the plant start oscillating," Mitra said. "These levels rise rapidly, then slowly drop down. This process – called calcium spiking – repeats over and over, at a rate of about one oscillation per minute, and continues for hours."

In an effort to better understand this phenomenon, the research team compared normal Medicago plants with a mutant version raised in the lab. "This mutant was particularly interesting to us because it exhibited calcium spiking behavior but was unable to establish a symbiotic relationship with nitrogen-fixing bacteria," Mitra said.

Using microarray gene-chip technology, the researchers monitored RNA levels produced by 10,000 genes in both normal and mutant plants. "In the mutant plants, we found one gene, called DMI3, that produced extremely low levels of RNA," Mitra said. "The normal version of the DMI3 gene produces a protein that is remarkably similar to tobacco plant proteins that are known to modulate their behaviors in response to calcium."

This finding led the research team to conclude that the DMI3 gene may play an important role in the plant’s response to calcium oscillations. Last month, a Dutch and French research team published similar results in the journal Science. However, that group used traditional gene cloning methods to identify DMI3 – a process that took at least four years to complete, compared to six months using transcript-based cloning.

"The bottom line is this," Long said. "In the process of working on nitrogen fixation, we have discovered a general method for identifying and cloning important plant genes that is fast and may be applicable to almost any plant species."

Long, Mitra and their colleagues at the John Innes Centre are so confident that transcript-based cloning will have broad applications that they have applied for a patent.

Other co-authors of the PNAS study are Cynthia A. Gleason, Anne Edwards, James Hadfield, J. Allan Downie and Giles E. D. Oldroyd of the John Innes Centre. The work at Stanford was supported by the Howard Hughes Medical Institute and the U.S. Department of Energy. The work at the John Innes Centre was supported by the Biotechnology and Biological Sciences Research Council and the Royal Society.


Lisa Kwiatkowski, director of communications for Stanford’s School of Humanities and Sciences, contributed to this report.

Mark Shwartz | EurekAlert!
Further information:
http://cmgm.stanford.edu/biology/long
http://news-service.stanford.edu/news/2001/august8/symbiont-88.html
http://www.stanford.edu/news/

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>