Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural enemies help scientists untangle tropical forest food webs

18.03.2004


British ecologists have gathered compelling new experimental evidence on how tropical rain forest food webs are constructed, findings that may have important implications for their environmental management.



The research reported in Nature today (18 March) demonstrates how species that never meet may nevertheless influence each other’s ecology through shared parasites, and confirms the action of an important ecological theory in the highly biodiverse rain forest environment.

Ecologists have long believed that species which have nothing in common but a ’natural enemy’ - something that eats or parasitises both of them - may interact indirectly. The patterns that result parallel those caused by traditional competition for food, hence the name given to the effect: ’apparent competition’.


To test the theory scientists conducted a painstaking field experiment in Belize, Central America, measuring the effects of removing a beetle and a fly on other species with which they share natural enemies.

The beetle and fly belong to a very diverse group of insects whose larvae, named leaf miners, feed inside the leaves of plants. To take away just these particular insect leaf miners, researchers removed all traces of the plant that sustains only them.

A year after their removal, researchers surveyed the health of the insect species that shared natural enemies with the beetle and fly and found significantly lower parasitism and significantly higher abundance.

"This is basic ecological research intended chiefly to increase our understanding of these insect communities, but it also speaks to a number of biodiversity and management issues," said Professor Charles Godfray from the Natural Environment Research Council (NERC) Centre for Population Biology at Imperial, and author of the research.

If the results are typical of herbivore communities, say the authors, the development of this theory, and its associated experimental tests, will be essential to understand the diversity and structure of insect communities, especially in the species-rich tropics.

"It suggests that removal or addition of species, for example through selective logging or the release of a biological control agent, may have knock-on effects mediated by the network of natural enemies," said Professor Godfray.

The authors of the research from the NERC Centre for Population Biology at Imperial College London and the University of Oxford carried out the large-scale field experiment at the Natural History Museum’s Las Cuevas Research Station in Belize, Central America.

Their experiment wasn’t simple or easy: while scientists have carried out tests of apparent competition along coastal shorelines and in laboratory systems, manipulative experiments on insect communities in an environment as complex as a tropical forest are difficult and challenging and have rarely been attempted. Parasitism and predation can be especially intense, and levels of insect biodiversity are exceptionally high.

Previous work at the site by the same group led by one of the authors, Dr Owen Lewis, revealed the complexity of the food web they were studying: 93 species of leaf miner were attacked by 84 species of parasitoid wasp. Of the plants that were host to leaf miners, most were attacked by a single species but the researchers found that the vine plant Lepidaploa tortuosa was home to two leaf miners - a fly and a beetle (Latin names Pentispa fairmairei and Calycomyza sp. 8 respectively).

To test the apparent competition theory the researchers removed all of the L.tortuosa in their experimental fieldwork plots, alongside a 6-km stretch of track, in December 2001. In control plots the same biomass of plant material was removed from randomly chosen plant species that were not attacked by leaf miners.

Ten to 12 months, or five to six leaf miner generations, later, the scientists returned to measure the difference the clearance had made on the amount of parasitism and abundance of insects in the leaf miner food web.

Dr Becky Morris, a postdoctoral research associate at the NERC Centre for Population Biology and first author on the paper, masterminded the experimental work in Belize, organising and carrying out the host plant clearance.

The research was supported by the Natural Environment Research Council.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk
http://www.cpb.bio.imperial.ac.uk

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>