Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Question about fundamental chemistry of water answered


Water is simple, right? It is a simple, stable molecule - two hydrogen atoms strongly bonded to an oxygen atom. It is common in the universe, existing at a wide range of temperatures. As a liquid, it has interesting properties that allow it to dissolve many substances. It is basic to life, and it makes up most of your body.

However, a vigorous argument about some fundamental physical properties of this ubiquitous substance has been raging for over half a century. Now, a new finding to be published in the February 19 issue of the journal Nature may settle the dispute.

The article, by Y-Z Yue of Aalborg University in Denmark, and C.Austen Angell of the Department of Chemistry and Biochemistry at Arizona State University, is entitled "Clarifying the glass-transition behavior of water by comparison with hyperquenched inorganic glasses."

The authors argue that the currently accepted temperature at which water in the glassy state softens into a liquid ("glass transition"), is incorrect due to mistaking an "experimental artifact" for the glass transition itself. In fact, Yue and Angell argue that the amorphous solid form of water crystallizes before this softening ever happens.

Most of us assume that water’s basic properties are well understood, but in many ways, they are not. While we are familiar with water either as a liquid or as a crystalline solid (ice), its most common state in the universe is as a glass, a peculiar form of matter which is solid like ice but has a disorderly arrangement of molecules like a liquid. Scientists believe that water mainly exists in the glass state in intergalactic space -- in water films on dust particles -- and that comets (sometimes affectionately called "dirty iceballs") are made of it as well.

The transition between a liquid and its crystalline solid phase is sudden, with an abrupt change in the material’s heat content -- and state of order -- occurring when the material changes phase. Glasses, however, show a very different sort of behavior when they are heated, changing into a liquid gradually, showing a jump in heat capacity as the softening begins, but no jump in energy or state of order, as in melting. This jump in heat capacity defines the "glass transition."

Chemists, who form glassy water in the laboratory by splattering micro-droplets on extremely cold surfaces (a process called "hyperquenching"), were long unable to detect a glass transition for glassy water, as the material appeared to change to a crystalline solid before reaching the transition temperature. Finally, in 1987 a weak heat capacity change was thought to have been detected at 136 degrees Kelvin by "annealing" (heating and re-cooling to relax its structure) the water glass before it reached the point where it crystallizes. Since then, this has been generally accepted as the glass transition for water.

Now, Yue and Angell have shown, by examining a number of other hyperquenched inorganic glasses that have known glass transitions, that annealing the glasses causes a "shadow" of the glass transition to occur at lower temperatures than the actual transition occurs at.

"What people thought was the glass transition in water is actually just an annealing effect," said Angell. "The actual glass transition temperature cannot be seen in any experiment because, as many of us thought before, water crystallizes before the glass transition can occur."

Angell’s results point to a new understanding for the phases of water. Glassy water can now be seen as remaining solid (not changing to a liquid) at a much higher temperature than before, probably because of the strong tetrahedral network of hydrogen bonds holding the water molecules in place. However, this network is disrupted when substances dissolve in the water.

This fundamental problem on water has been only one part of a flurry of recent activities in Angell’s lab, including some that have potential importance for new technology. In a paper published in the October 17 issue of Science, Angell announced the development of a class of salts that, without needing a solvent to dissolve them, are liquid at room temperature and have the conductivity of aqueous solutions. These electrolytes not only closed a historical gap between aqueous solutions and other liquids but also prove to be exceptional, possibly superior, electrolytes for use in developing efficient hydrogen fuel cells.

In other, more esoteric, work Angell and colleague Srikanth Sastry, at the Nehru Research Center in India, reported in the November 27 issue of Nature Materials that a liquid-to-liquid phase transition, much discussed but not proven in connection with the anomalies of water, had been clearly observed in the liquid state of silicon. Silicon, in analogy to water, likes to have four nearest neighbors around every atom forming a network like that in glassy water.

James Hathaway | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>