Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple sugars make cell walls like steel

21.01.2004


Simple sugars apparently are the biological signals needed to maintain the steel-like strength of plant cell walls, according to Purdue University scientists.


Purdue researcher Nick Carpita uses Arabidopsis plants grown in this growth chamber at Purdue’s Hansen Life Sciences Research Building to determine what makes some plant cell walls as strong as steel. (Purdue Agricultural Communications photo/Tom Campbell)



"This is a really fundamental discovery in the mechanics of plant growth that eventually could have several practical applications," said Nick Carpita, a botany and plant pathology professor. "These could include controlling crop plant size and shape, improving desirable textural properties of fruits and vegetables, and enhancing nutritional fibers in plant cell walls without changing other plant structural factors."

Before these goals can be accomplished, however, the scientists must learn as much as possible about how plant cell walls are created and evolve, he said.


Plant cell walls are composites of minute plant fibers interlaced with many different chains of simple sugars, or polymers, that make the structure strong, Carpita said. While studying how cell walls change as plants develop, his research team discovered that an enzyme requires a simple milk sugar, called galactose, to relace polymers during growth.

The scientists report their findings in the January issue of the journal Plant Physiology.

"A plant cell is essentially concentric rings or spools of cellulose, so when the cells expand, the microfibrils of the wall spread apart," Carpita said. "New microfibrils, or minute organic plant fibers, that are synthesized during growth are continually integrated from the inner rings into the outer rings.

"This process prevents the thickness of the wall from changing even as the cell increases 100 or 1,000 times its length."

The galactose needed to ensure wall strength during plant cell growth is attached to some long polymers, he said. However, abnormal plants, or mutants, that are missing the simple sugars lose cell wall tensile strength.

Xyloglucan, a sugar polymer that has several molecules of simple sugars, ties the spools of cellulose together, he said. An enzyme called xyloglucan endo-transglucosylase, or XET, breaks the tether during cell growth to allow the microfibrils to separate. However, XET hangs onto one end of the broken polymer so when a new cellulose fibril forms to fill the space, the enzyme brings old and new xyloglucans together to relace the cellulose to maintain tensile strength. This process not only allows the cell wall to grow, but also is the way growth is finally halted.

"When the plant cells grow, there is a mechanism to loosen the cell walls of the interlacing molecules so the sugar can push those microfibrils apart," Carpita said. "The thickness isn’t compromised because new cellulose microfibrils fill the gap. Unless the xyloglucans are retied or reassociated around the new configurations of microfibrils, the cells will continue to expand indefinitely."

Using the common research plant Arabidopsis, the researchers looked at mutants and found some that developed abnormally. The mutants the scientists studied had an area at the base of the embryonic plant stems, called the hypocotyls, that bulged.

"We isolated the enzyme, isolated the individual polymers, and showed that their activity was severely compromised if the simple sugar galactose was missing from the xyloglucan," Carpita said. "In the plant, the consequence is that the tensile strength of the cell walls is less than half of normal.

"They are really flimsy cells and they bulge out. Instead of being really nice and columnar as this tissue usually is, they get a little flabby. We deduced that these galactose appendages are required for XET to recognize where to clip the xyloglucans to allow expansion and then to retie them."

The scientists want to find out how to control cell wall formation by determining the function of all the genes in their formation, development and growth. This may allow them to improve many everyday products from food to chairs.

The other researchers involved in this study are Maria Peña, currently of Complex Carbohydrate Research Center, University of Georgia; and Peter Ryden and Andrew C. Smith, of the Institute of Food Research, Norwich Research Park, Colney, England; and Michael Madson, Lafayette, Ind.

The U.S. Department of Agriculture National Research Initiative Competitive Grants Program and the Biological Sciences Research Council of Great Britain funded this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Nicholas Carpita, (765) 494-4653, carpita@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040120.Carpita.strength.html
http://cellwall.genomics.purdue.edu
http://www.btny.purdue.edu

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>