Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue chemist ’mussels’ in on secrets of natural adhesives

13.01.2004


Purdue University scientists have found the glue that saltwater mussels use to affix themselves to rocks is a subject worth sticking to, both for its pure scientific interest and for its potential applications in medicine and industry.


Jonathan Wilker of the Purdue University chemistry department examines a group of saltwater mussels. The natural glue these creatures make to anchor themselves to the sea floor has surprising chemical characteristics and could have applications in medicine and industry. (Purdue News Service photo/David Umberger)



Jonathan Wilker and his research group have discovered that the formation of mussel adhesive requires iron, a metal that has never before been found in such a biological function. While the discovery is valuable for its scientific merit, it also could impact the market as well, leading to surgical adhesives, rustproof coatings and antifouling paints to defeat barnacle adhesion.

"These animals appear to use iron in a way that has never been seen before," said Wilker, an assistant professor of chemistry in Purdue’s School of Science. "Research based on materials like this one could open up new branches of adhesives research, helping us to do things such as develop new surgical procedures and prevent barnacles from sticking to ships."


The research appears as the "feature communication" in today’s (Monday, 1/12) issue of Angewandte Chemie International Edition, a leading chemistry journal.

Mussels stick to objects such as rocks, pilings and each other. Up close, it is easy to see the dozens of tiny filaments - often referred to as its beard - that stretch from a mussel, attaching it to its home turf. A mussel has an organ called a "foot" that it extends, attaching each filament to a stationary object with a tiny dab of glue. The foot then repeats the process until it is secure enough to resist the pull of tides, currents and predators.

"It takes about five minutes for a mussel to make an adhesive plaque, and it uses 20 or more such plaques to anchor itself," Wilker said. "A mussel can easily establish itself overnight."

Key to the mussel’s tenacity is the plaque, or glue, that holds these filaments in place, and it is the chemistry of this glue that Wilker and his fellow researchers are studying. Metals such as iron are usually needed only in trace quantities for life, but Wilker’s research has demonstrated a novel role for metals: biomaterial formation.

"This is the first time a transition metal has been found to be essential for the formation of an amorphous biological material," he said. "We will be exploring other organisms that produce materials, such as barnacles, kelp and oysters, to see if there is a common theme in the synthesis of biological materials."

Wilker first became interested in this subject while on break from academic work, pursuing one of his favorite hobbies - scuba diving.

"I was looking at mussels and barnacles while diving and wondered how they stick," he said. "I checked the literature for an answer and saw that many of the details for these processes were not known."

This simple question of how mussels stick has turned into a years-long project for Wilker, occupying him since he arrived at Purdue in August of 1999. His work has uncovered a new aspect of bioadhesives, most of which are based upon proteins. Prior to curing, these protein mixtures can resemble gelatin.

"The mixture we extract from mussels has a consistency similar to gelatin," Wilker said. "When we add iron, the mussel proteins cross-link or ’cure’ and the material hardens. Other bioavailable metal ions do not appear to bring about this cross-linking. Our spectroscopic experiments show how this iron binds the proteins for cross-linking, turning them into glue."

Mussels obtain iron by filtering it directly from their surrounding water. As with other bivalves, such as oysters and scallops, mussels obtain all the nutrients they need in this fashion.

Wilker said that mussels can affix themselves to nearly any surface, including Teflon, the same substance used to make non-stick coatings for frying pans.

"This material’s ability to adhere to many surfaces and its biological origin may makeit useful in medical applications," Wilker said. "This glue could be modified for use in wound closure, nerve reconstruction, or when one might need a scaffold upon which to grow cells and build new tissue."

Another potential application could be in rustproof coatings, often used in outdoor settings such as the exteriors of buildings and cars.

"There are coatings on the market made from polymers, but none are ideal," Wilker said. "By using this glue to coat surfaces, we may have a natural rustproofing compound."

Further research also could reveal a less environmentally damaging way to keep barnacles and mussels from attaching themselves to ship hulls, where they increase drag and reduce sailing speeds.

"Copper-based paints are often used on ship bottoms to kill barnacles in their larval state and prevent them from attaching," Wilker said. "But this use of copper-based antifouling paints has harmed the marine ecosystem. Copper levels in most harbors are through the roof nowadays. Obviously this is a major environmental problem, and in the future we might be in a position to help solve it."

Wilker said he is excited to work in such a fascinating area of research early in his career, one that could possibly yield so many benefits.

"We may be able to take parts of this glue and use them to make materials that have controlled electronic, magnetic or optical properties," he said. "Mussel glues have provided insights on new aspects of materials design. This research lies at a point where chemistry, biology, engineering and materials science intersect, and that’s exciting."

This research was sponsored in part by a National Science Foundation CAREER Award, the Arnold and Mabel Beckman Foundation, the Alfred P. Sloan Foundation and the Purdue Research Foundation.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Jonathan Wilker, (765) 496-3382, wilker@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040112.Wilker.mussels.html

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>