Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue chemist ’mussels’ in on secrets of natural adhesives

13.01.2004


Purdue University scientists have found the glue that saltwater mussels use to affix themselves to rocks is a subject worth sticking to, both for its pure scientific interest and for its potential applications in medicine and industry.


Jonathan Wilker of the Purdue University chemistry department examines a group of saltwater mussels. The natural glue these creatures make to anchor themselves to the sea floor has surprising chemical characteristics and could have applications in medicine and industry. (Purdue News Service photo/David Umberger)



Jonathan Wilker and his research group have discovered that the formation of mussel adhesive requires iron, a metal that has never before been found in such a biological function. While the discovery is valuable for its scientific merit, it also could impact the market as well, leading to surgical adhesives, rustproof coatings and antifouling paints to defeat barnacle adhesion.

"These animals appear to use iron in a way that has never been seen before," said Wilker, an assistant professor of chemistry in Purdue’s School of Science. "Research based on materials like this one could open up new branches of adhesives research, helping us to do things such as develop new surgical procedures and prevent barnacles from sticking to ships."


The research appears as the "feature communication" in today’s (Monday, 1/12) issue of Angewandte Chemie International Edition, a leading chemistry journal.

Mussels stick to objects such as rocks, pilings and each other. Up close, it is easy to see the dozens of tiny filaments - often referred to as its beard - that stretch from a mussel, attaching it to its home turf. A mussel has an organ called a "foot" that it extends, attaching each filament to a stationary object with a tiny dab of glue. The foot then repeats the process until it is secure enough to resist the pull of tides, currents and predators.

"It takes about five minutes for a mussel to make an adhesive plaque, and it uses 20 or more such plaques to anchor itself," Wilker said. "A mussel can easily establish itself overnight."

Key to the mussel’s tenacity is the plaque, or glue, that holds these filaments in place, and it is the chemistry of this glue that Wilker and his fellow researchers are studying. Metals such as iron are usually needed only in trace quantities for life, but Wilker’s research has demonstrated a novel role for metals: biomaterial formation.

"This is the first time a transition metal has been found to be essential for the formation of an amorphous biological material," he said. "We will be exploring other organisms that produce materials, such as barnacles, kelp and oysters, to see if there is a common theme in the synthesis of biological materials."

Wilker first became interested in this subject while on break from academic work, pursuing one of his favorite hobbies - scuba diving.

"I was looking at mussels and barnacles while diving and wondered how they stick," he said. "I checked the literature for an answer and saw that many of the details for these processes were not known."

This simple question of how mussels stick has turned into a years-long project for Wilker, occupying him since he arrived at Purdue in August of 1999. His work has uncovered a new aspect of bioadhesives, most of which are based upon proteins. Prior to curing, these protein mixtures can resemble gelatin.

"The mixture we extract from mussels has a consistency similar to gelatin," Wilker said. "When we add iron, the mussel proteins cross-link or ’cure’ and the material hardens. Other bioavailable metal ions do not appear to bring about this cross-linking. Our spectroscopic experiments show how this iron binds the proteins for cross-linking, turning them into glue."

Mussels obtain iron by filtering it directly from their surrounding water. As with other bivalves, such as oysters and scallops, mussels obtain all the nutrients they need in this fashion.

Wilker said that mussels can affix themselves to nearly any surface, including Teflon, the same substance used to make non-stick coatings for frying pans.

"This material’s ability to adhere to many surfaces and its biological origin may makeit useful in medical applications," Wilker said. "This glue could be modified for use in wound closure, nerve reconstruction, or when one might need a scaffold upon which to grow cells and build new tissue."

Another potential application could be in rustproof coatings, often used in outdoor settings such as the exteriors of buildings and cars.

"There are coatings on the market made from polymers, but none are ideal," Wilker said. "By using this glue to coat surfaces, we may have a natural rustproofing compound."

Further research also could reveal a less environmentally damaging way to keep barnacles and mussels from attaching themselves to ship hulls, where they increase drag and reduce sailing speeds.

"Copper-based paints are often used on ship bottoms to kill barnacles in their larval state and prevent them from attaching," Wilker said. "But this use of copper-based antifouling paints has harmed the marine ecosystem. Copper levels in most harbors are through the roof nowadays. Obviously this is a major environmental problem, and in the future we might be in a position to help solve it."

Wilker said he is excited to work in such a fascinating area of research early in his career, one that could possibly yield so many benefits.

"We may be able to take parts of this glue and use them to make materials that have controlled electronic, magnetic or optical properties," he said. "Mussel glues have provided insights on new aspects of materials design. This research lies at a point where chemistry, biology, engineering and materials science intersect, and that’s exciting."

This research was sponsored in part by a National Science Foundation CAREER Award, the Arnold and Mabel Beckman Foundation, the Alfred P. Sloan Foundation and the Purdue Research Foundation.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Jonathan Wilker, (765) 496-3382, wilker@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040112.Wilker.mussels.html

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>