Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic master switch sends bacteria toward ’seafood dinner’

29.12.2003


Biologists unravel part of the mystery behind disappearance of shell material



Chitin, the Earth’s second-most abundant biological material, is a major component in the flurry of skeletal debris discarded daily by crustacean creatures in the world’s oceans. If left undisturbed, this tough insoluble material, a cousin to cellulose, would pile up on the ocean’s floor and wreak havoc with marine ecosystems. Fortunately, armies of bacteria act as chitin’s cleanup crew, and two Johns Hopkins University biologists have made a key discovery about how and when these microscopic soldiers launch their search-and-devour missions.

Writing in the Online Early Edition of "Proceedings of the National Academy of Sciences" for the week of Dec. 29, 2003, Xibing Li and Saul Roseman reported that they had found a genetic master switch that reacts to the presence of nearby chitin and sets off a biological chain reaction, causing the bacterial feast to begin. Understanding this process is important because 1011 tons of chitin (pronounced "KITE-in") are dumped annually in the oceans, largely by tiny sea animals called copepods, which shed their shells as they grow. "If nothing happened to this debris, we’d be up to our eyeballs in chitin, and the carbon and nitrogen cycle upon which marine life depends would be gone within 50 to 75 years," said Roseman, a professor of biology in the Kreiger School of Arts and Sciences at Johns Hopkins.


Researchers were puzzled about the disappearance of chitin because little of the material turned up in sediment on the ocean floors. Where did all of the chitin go? Then, about 70 years ago, two microbiologists determined that bacteria were quickly consuming the sinking shells and preserving the ecological balance. Since then, however, several mysteries have remained: How do the bacteria find these undersea meals? How do these microorganisms attach themselves to the chitin? How do they degrade the tough material and turn it into food?

During the past decade, Roseman and his colleagues have made several advances in answering these questions. In the new PNAS paper, Li and Roseman reported that they had identified and isolated the bacterial master switch that controls at least 50 and perhaps up to 300 other genes involved in the chitin sensing and consumption process. The biologists made their discovery by studying mutated versions of Vibrios, the ocean’s most common bacteria, which can cause illnesses such as cholera. The scientists separated and tested the mutant strains according to their ability to detect and break down chitin, then they analyzed the bacteria’s genetic structure to pinpoint the master switch.

"We believe," Roseman said, "that when the Vibrios are not in their feeding mode, this master switch remain in the ’minus’ or ’off’ position, locked in place by a binding protein. This keeps the cells from wasting energy by manufacturing proteins that won’t do them any good at that time."

Roseman added, "When the bacteria are starving, however, they secrete an enzyme called chitinase into the water. When chitinase touches the discarded shell material, it begins breaking down chitin, releasing a partially degraded soluble form into the water. These molecules are the signals to the bacteria that chitin is nearby. Diffusing through the ocean near the bacteria, these dissolved fragments of degraded chitin bind to the binding protein and remove the ’lock,’ allowing the master switch to move into a ’plus’ or ’on’ position."

When the switch is on, the bacteria’s genes get to work, moving the organisms along the trail of partially degraded chitin back to its source material, like a hungry traveler following the aroma of hot food to a roadside restaurant. In the ocean, the bacteria follow a gradient stream of higher and higher concentrations of dissolved degraded chitin until they reach the solid shell material. The bacteria then latch on and begin their feast.

"The master switch gene appears to be the key to this complex feeding process," said Li, an associate research scientist in the Department of Biology and lead author of the new paper. "This gives us a better understanding of the microscopic processes that keep our oceans from being overwhelmed by biological debris from sea creatures."

Phil Sneiderman | EurekAlert!
Further information:
http://www.bio.jhu.edu/
http://www.bio.jhu.edu/Directory/Faculty/Roseman/Default.html

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>