Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic master switch sends bacteria toward ’seafood dinner’

29.12.2003


Biologists unravel part of the mystery behind disappearance of shell material



Chitin, the Earth’s second-most abundant biological material, is a major component in the flurry of skeletal debris discarded daily by crustacean creatures in the world’s oceans. If left undisturbed, this tough insoluble material, a cousin to cellulose, would pile up on the ocean’s floor and wreak havoc with marine ecosystems. Fortunately, armies of bacteria act as chitin’s cleanup crew, and two Johns Hopkins University biologists have made a key discovery about how and when these microscopic soldiers launch their search-and-devour missions.

Writing in the Online Early Edition of "Proceedings of the National Academy of Sciences" for the week of Dec. 29, 2003, Xibing Li and Saul Roseman reported that they had found a genetic master switch that reacts to the presence of nearby chitin and sets off a biological chain reaction, causing the bacterial feast to begin. Understanding this process is important because 1011 tons of chitin (pronounced "KITE-in") are dumped annually in the oceans, largely by tiny sea animals called copepods, which shed their shells as they grow. "If nothing happened to this debris, we’d be up to our eyeballs in chitin, and the carbon and nitrogen cycle upon which marine life depends would be gone within 50 to 75 years," said Roseman, a professor of biology in the Kreiger School of Arts and Sciences at Johns Hopkins.


Researchers were puzzled about the disappearance of chitin because little of the material turned up in sediment on the ocean floors. Where did all of the chitin go? Then, about 70 years ago, two microbiologists determined that bacteria were quickly consuming the sinking shells and preserving the ecological balance. Since then, however, several mysteries have remained: How do the bacteria find these undersea meals? How do these microorganisms attach themselves to the chitin? How do they degrade the tough material and turn it into food?

During the past decade, Roseman and his colleagues have made several advances in answering these questions. In the new PNAS paper, Li and Roseman reported that they had identified and isolated the bacterial master switch that controls at least 50 and perhaps up to 300 other genes involved in the chitin sensing and consumption process. The biologists made their discovery by studying mutated versions of Vibrios, the ocean’s most common bacteria, which can cause illnesses such as cholera. The scientists separated and tested the mutant strains according to their ability to detect and break down chitin, then they analyzed the bacteria’s genetic structure to pinpoint the master switch.

"We believe," Roseman said, "that when the Vibrios are not in their feeding mode, this master switch remain in the ’minus’ or ’off’ position, locked in place by a binding protein. This keeps the cells from wasting energy by manufacturing proteins that won’t do them any good at that time."

Roseman added, "When the bacteria are starving, however, they secrete an enzyme called chitinase into the water. When chitinase touches the discarded shell material, it begins breaking down chitin, releasing a partially degraded soluble form into the water. These molecules are the signals to the bacteria that chitin is nearby. Diffusing through the ocean near the bacteria, these dissolved fragments of degraded chitin bind to the binding protein and remove the ’lock,’ allowing the master switch to move into a ’plus’ or ’on’ position."

When the switch is on, the bacteria’s genes get to work, moving the organisms along the trail of partially degraded chitin back to its source material, like a hungry traveler following the aroma of hot food to a roadside restaurant. In the ocean, the bacteria follow a gradient stream of higher and higher concentrations of dissolved degraded chitin until they reach the solid shell material. The bacteria then latch on and begin their feast.

"The master switch gene appears to be the key to this complex feeding process," said Li, an associate research scientist in the Department of Biology and lead author of the new paper. "This gives us a better understanding of the microscopic processes that keep our oceans from being overwhelmed by biological debris from sea creatures."

Phil Sneiderman | EurekAlert!
Further information:
http://www.bio.jhu.edu/
http://www.bio.jhu.edu/Directory/Faculty/Roseman/Default.html

More articles from Life Sciences:

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

nachricht Keeping the excitement under control
18.04.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>