Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells illuminate early stages of human development

23.12.2003


When introduced to the world in 1998, human embryonic stem cells were considered heralds of a new age of transplant medicine. The prospect of an unlimited supply of cells and tissue of all kinds to treat disease captured public imagination and enthusiasm.



But lost in the glitz of the cells’ potential to treat an array of devastating and sometimes fatal diseases was another quality that, when all is said and done, could match even the prospect of remaking transplant technology.

"Much of the excitement surrounding embryonic stem cell research focuses on their potential for transplantation to repair diseased organs," according to Thaddeus G. Golos, a University of Wisconsin-Madison professor of obstetrics and gynecology. "The cells are also a valuable model for beginning to understand the puzzles of early human development."


Indeed, a team led by Golos and colleagues at the Wisconsin National Primate Research Center has now taken some of the first critical steps to putting stem cells to use to understand early development and maternal and fetal health. Writing in the December online editions of the journal Endocrinology, the team led by Golos reports the development of a stem cell model that mimics the formation of the placenta during the earliest stages of human development.

The lab feat is important because prior to the advent of human embryonic stem cells, science’s primary window to early development was through studies of mice and other animal models. Human embryonic stem cells and the work of Golos’ team has now brought the very first stages of human development, as an embryo implants itself in the uterus, within reach of science. The work could one day help clinicians better understand and treat diseases of pregnancy such as preeclampsia, a disorder that occurs only during pregnancy and the postpartum period and that, by conservative estimates, kills at least 76,000 women and infants each year.

A key aspect of the work by the Wisconsin team was the creation of embryoid bodies, clumps of cells that arise when undifferentiated stem cells are removed from flat culture plates and grown in a suspended culture of proteins and hormones.

"Embryoid bodies are not embryos, but are spherical structures that form when embryonic stem cell colonies are released from the culture surface and grown in suspension," Golos explains.

In that environment, the team subsequently observed the development of trophoblast cells from the embryoid bodies. These specialized cells are the building blocks that lead to the formation of the placenta, which orchestrates a maternal environment that protects and nurtures a fetus during pregnancy.

Golos said that when the embryoid bodies were transferred into an artificial matrix that mimics the network of proteins that surrounds all of the cells in our bodies, his group observed a dramatic increase in trophoblasts’ secretion of hormones associated with pregnancy.

"Moreover, the cell outgrowths that we observed from the embryoid bodies resembled aspects of the process by which placenta formation occurs as the embryo implants into the womb," Golos explains. "The opportunity to model these processes with embryonic stem cells is important because the earliest stages of placental function and how its development is controlled cannot be studied in human embryos or early human pregnancy."

By using embryonic stem cells to create a window to these very early stages of human development, scientists now can gain access to the cellular and chemical secrets of how such critical features as extraembryonic membranes, especially the placenta, grow and develop during pregnancy.

"These steps are essential for the establishment and maintenance of pregnancy," says Golos. "The establishment of mammalian pregnancy requires that the early embryo make a timely decision to begin to form the placenta, the first functional fetal organ."

The big picture, according to Golos, is that a better basic understanding of the events that occur during human pregnancy will ultimately lead to advances in maternal and fetal health. Down the road, such knowledge may lead to fewer birth defects, a lower incidence of miscarriage, and improved health for women and infants.

Co-authors of the new Endocrinology paper include Behzad Gerami-Naini, Oksana V. Dovzhenko, Maureen Durning and Frederick H. Wegner of the Wisconsin National Primate Research Center, and James A. Thomson of the Wisconsin National Primate Research Center and the UW-Madison Medical School’s Department of Anatomy.


###
- Terry Devitt 608-262-8282, trdevitt@wisc.edu

The March of Dimes Foundation and the National Institutes of Health supported the work of the Wisconsin team.

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>