Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover pathway that could lead to plant generation of human-like protein

16.12.2003


The researchers -- led by Lokesh Joshi, an ASU associate professor in the Harrington Department of Bioengineering of the Ira A. Fulton School of Engineering and a member of the Arizona BioDesign Institute -- have found a pathway whereby plants can generate human-like proteins. This discovery could lead to an effective means of producing proteins that are medically important and do so with a method that could be effective and less expensive than current methods, Joshi said.



"The discovery has both basic and applied science applications," Joshi said. "It is a pathway, a set of chemical reactions, that had never been reported before in plants. The discovery will facilitate the use of plants to produce medically important proteins, in their correct form, for human use."

A paper detailing the research, "Sialylated endogenous glycoconjugates in plant cells," appears in the December 2003 issue of Nature Biotechnology. In addition to Joshi, authors of the paper are ASU graduate student Miti Shah, visiting professor Kazuhito Fujiyama, and ASU research scientist C. Robert Flynn.


Using plants to make proteins for humans is an idea that has been discussed for some time. But a common problem with plant-produced proteins is that they are often rejected by the human body, which sees them as foreign. As a result, the body’s immune system attacks the substances to rid itself of them.

Researchers had found that the trigger for this action was the lack of specific sugar groups called sialic acids, attached to the sugar chains on protein molecules. When these groups are present on the proteins, the body does not act to rid itself of them. Without the sugar groups, however, the immune system kicks in and the protein (drug) is rapidly cleared away.

"In humans, sialic acids protect the protein," Joshi said. "They tell our body that this is a self-made protein. If it is not there on a glycoprotein, then our body says it is not a self-made protein and it needs to be removed."

Joshi and his colleague’s discovery is a complex pathway, or set of chemical reactions, in plants that attach theses sugar groups to the proteins. This pathway, in essence, is common to humans and plants.

"It’s a sialic acid synthesis pathway," Joshi said. "In humans they are important for the half-life of our proteins and immune system, but we don’t know what their role is in plants. It may be related to a plant’s ability to survive stressful conditions, like a lack of water or nutrients, or it may have a role in plant-pathogen interaction."

So far, the team has worked on three human proteins -- an immune activator called a macrophage activating factor, a type of collagen and a heat shock protein. They have done the work on three plants -- tobacco, arabidopsis and alfalfa.

"What we discovered is that there is a very complex set of reactions that exist in plants and no one knows how it got there or what it is doing there, but it is similar to human beings," Joshi said.

Knowing that the pathway exists, he explained, opens up an avenue that can be used to make the correct glycoproteins for humans by plants. However, the researchers need to enhance other aspects of the process.

"We are seeing about 2 to 3 percent of sialic acids on proteins made in plants. We would like to see 95 percent," Joshi said. "So we are working on metabolic engineering methods to enhance the levels of enzymes involved in these reactions in the plant to get maximum yield.

The researchers will continue their work on the new pathways, exploiting systems that exist in plants, rather than adding a gene to a plant to make it work in a completely different manner.

"I believe that plants have the genetic makeup to carry out complex human-like reactions," Joshi explained. "Our approach is to use what exists in the plant system and manipulate that to develop something for human beings. Now we have found the genes in the plants and we are working with those in the lab to regulate them and get more and more sialic acids out of them."


Sources:
Lokesh Joshi, (480) 965-0655
Lokesh.joshi@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>