Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover pathway that could lead to plant generation of human-like protein

16.12.2003


The researchers -- led by Lokesh Joshi, an ASU associate professor in the Harrington Department of Bioengineering of the Ira A. Fulton School of Engineering and a member of the Arizona BioDesign Institute -- have found a pathway whereby plants can generate human-like proteins. This discovery could lead to an effective means of producing proteins that are medically important and do so with a method that could be effective and less expensive than current methods, Joshi said.



"The discovery has both basic and applied science applications," Joshi said. "It is a pathway, a set of chemical reactions, that had never been reported before in plants. The discovery will facilitate the use of plants to produce medically important proteins, in their correct form, for human use."

A paper detailing the research, "Sialylated endogenous glycoconjugates in plant cells," appears in the December 2003 issue of Nature Biotechnology. In addition to Joshi, authors of the paper are ASU graduate student Miti Shah, visiting professor Kazuhito Fujiyama, and ASU research scientist C. Robert Flynn.


Using plants to make proteins for humans is an idea that has been discussed for some time. But a common problem with plant-produced proteins is that they are often rejected by the human body, which sees them as foreign. As a result, the body’s immune system attacks the substances to rid itself of them.

Researchers had found that the trigger for this action was the lack of specific sugar groups called sialic acids, attached to the sugar chains on protein molecules. When these groups are present on the proteins, the body does not act to rid itself of them. Without the sugar groups, however, the immune system kicks in and the protein (drug) is rapidly cleared away.

"In humans, sialic acids protect the protein," Joshi said. "They tell our body that this is a self-made protein. If it is not there on a glycoprotein, then our body says it is not a self-made protein and it needs to be removed."

Joshi and his colleague’s discovery is a complex pathway, or set of chemical reactions, in plants that attach theses sugar groups to the proteins. This pathway, in essence, is common to humans and plants.

"It’s a sialic acid synthesis pathway," Joshi said. "In humans they are important for the half-life of our proteins and immune system, but we don’t know what their role is in plants. It may be related to a plant’s ability to survive stressful conditions, like a lack of water or nutrients, or it may have a role in plant-pathogen interaction."

So far, the team has worked on three human proteins -- an immune activator called a macrophage activating factor, a type of collagen and a heat shock protein. They have done the work on three plants -- tobacco, arabidopsis and alfalfa.

"What we discovered is that there is a very complex set of reactions that exist in plants and no one knows how it got there or what it is doing there, but it is similar to human beings," Joshi said.

Knowing that the pathway exists, he explained, opens up an avenue that can be used to make the correct glycoproteins for humans by plants. However, the researchers need to enhance other aspects of the process.

"We are seeing about 2 to 3 percent of sialic acids on proteins made in plants. We would like to see 95 percent," Joshi said. "So we are working on metabolic engineering methods to enhance the levels of enzymes involved in these reactions in the plant to get maximum yield.

The researchers will continue their work on the new pathways, exploiting systems that exist in plants, rather than adding a gene to a plant to make it work in a completely different manner.

"I believe that plants have the genetic makeup to carry out complex human-like reactions," Joshi explained. "Our approach is to use what exists in the plant system and manipulate that to develop something for human beings. Now we have found the genes in the plants and we are working with those in the lab to regulate them and get more and more sialic acids out of them."


Sources:
Lokesh Joshi, (480) 965-0655
Lokesh.joshi@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>