Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover pathway that could lead to plant generation of human-like protein

16.12.2003


The researchers -- led by Lokesh Joshi, an ASU associate professor in the Harrington Department of Bioengineering of the Ira A. Fulton School of Engineering and a member of the Arizona BioDesign Institute -- have found a pathway whereby plants can generate human-like proteins. This discovery could lead to an effective means of producing proteins that are medically important and do so with a method that could be effective and less expensive than current methods, Joshi said.



"The discovery has both basic and applied science applications," Joshi said. "It is a pathway, a set of chemical reactions, that had never been reported before in plants. The discovery will facilitate the use of plants to produce medically important proteins, in their correct form, for human use."

A paper detailing the research, "Sialylated endogenous glycoconjugates in plant cells," appears in the December 2003 issue of Nature Biotechnology. In addition to Joshi, authors of the paper are ASU graduate student Miti Shah, visiting professor Kazuhito Fujiyama, and ASU research scientist C. Robert Flynn.


Using plants to make proteins for humans is an idea that has been discussed for some time. But a common problem with plant-produced proteins is that they are often rejected by the human body, which sees them as foreign. As a result, the body’s immune system attacks the substances to rid itself of them.

Researchers had found that the trigger for this action was the lack of specific sugar groups called sialic acids, attached to the sugar chains on protein molecules. When these groups are present on the proteins, the body does not act to rid itself of them. Without the sugar groups, however, the immune system kicks in and the protein (drug) is rapidly cleared away.

"In humans, sialic acids protect the protein," Joshi said. "They tell our body that this is a self-made protein. If it is not there on a glycoprotein, then our body says it is not a self-made protein and it needs to be removed."

Joshi and his colleague’s discovery is a complex pathway, or set of chemical reactions, in plants that attach theses sugar groups to the proteins. This pathway, in essence, is common to humans and plants.

"It’s a sialic acid synthesis pathway," Joshi said. "In humans they are important for the half-life of our proteins and immune system, but we don’t know what their role is in plants. It may be related to a plant’s ability to survive stressful conditions, like a lack of water or nutrients, or it may have a role in plant-pathogen interaction."

So far, the team has worked on three human proteins -- an immune activator called a macrophage activating factor, a type of collagen and a heat shock protein. They have done the work on three plants -- tobacco, arabidopsis and alfalfa.

"What we discovered is that there is a very complex set of reactions that exist in plants and no one knows how it got there or what it is doing there, but it is similar to human beings," Joshi said.

Knowing that the pathway exists, he explained, opens up an avenue that can be used to make the correct glycoproteins for humans by plants. However, the researchers need to enhance other aspects of the process.

"We are seeing about 2 to 3 percent of sialic acids on proteins made in plants. We would like to see 95 percent," Joshi said. "So we are working on metabolic engineering methods to enhance the levels of enzymes involved in these reactions in the plant to get maximum yield.

The researchers will continue their work on the new pathways, exploiting systems that exist in plants, rather than adding a gene to a plant to make it work in a completely different manner.

"I believe that plants have the genetic makeup to carry out complex human-like reactions," Joshi explained. "Our approach is to use what exists in the plant system and manipulate that to develop something for human beings. Now we have found the genes in the plants and we are working with those in the lab to regulate them and get more and more sialic acids out of them."


Sources:
Lokesh Joshi, (480) 965-0655
Lokesh.joshi@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>