Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover pathway that could lead to plant generation of human-like protein

16.12.2003


The researchers -- led by Lokesh Joshi, an ASU associate professor in the Harrington Department of Bioengineering of the Ira A. Fulton School of Engineering and a member of the Arizona BioDesign Institute -- have found a pathway whereby plants can generate human-like proteins. This discovery could lead to an effective means of producing proteins that are medically important and do so with a method that could be effective and less expensive than current methods, Joshi said.



"The discovery has both basic and applied science applications," Joshi said. "It is a pathway, a set of chemical reactions, that had never been reported before in plants. The discovery will facilitate the use of plants to produce medically important proteins, in their correct form, for human use."

A paper detailing the research, "Sialylated endogenous glycoconjugates in plant cells," appears in the December 2003 issue of Nature Biotechnology. In addition to Joshi, authors of the paper are ASU graduate student Miti Shah, visiting professor Kazuhito Fujiyama, and ASU research scientist C. Robert Flynn.


Using plants to make proteins for humans is an idea that has been discussed for some time. But a common problem with plant-produced proteins is that they are often rejected by the human body, which sees them as foreign. As a result, the body’s immune system attacks the substances to rid itself of them.

Researchers had found that the trigger for this action was the lack of specific sugar groups called sialic acids, attached to the sugar chains on protein molecules. When these groups are present on the proteins, the body does not act to rid itself of them. Without the sugar groups, however, the immune system kicks in and the protein (drug) is rapidly cleared away.

"In humans, sialic acids protect the protein," Joshi said. "They tell our body that this is a self-made protein. If it is not there on a glycoprotein, then our body says it is not a self-made protein and it needs to be removed."

Joshi and his colleague’s discovery is a complex pathway, or set of chemical reactions, in plants that attach theses sugar groups to the proteins. This pathway, in essence, is common to humans and plants.

"It’s a sialic acid synthesis pathway," Joshi said. "In humans they are important for the half-life of our proteins and immune system, but we don’t know what their role is in plants. It may be related to a plant’s ability to survive stressful conditions, like a lack of water or nutrients, or it may have a role in plant-pathogen interaction."

So far, the team has worked on three human proteins -- an immune activator called a macrophage activating factor, a type of collagen and a heat shock protein. They have done the work on three plants -- tobacco, arabidopsis and alfalfa.

"What we discovered is that there is a very complex set of reactions that exist in plants and no one knows how it got there or what it is doing there, but it is similar to human beings," Joshi said.

Knowing that the pathway exists, he explained, opens up an avenue that can be used to make the correct glycoproteins for humans by plants. However, the researchers need to enhance other aspects of the process.

"We are seeing about 2 to 3 percent of sialic acids on proteins made in plants. We would like to see 95 percent," Joshi said. "So we are working on metabolic engineering methods to enhance the levels of enzymes involved in these reactions in the plant to get maximum yield.

The researchers will continue their work on the new pathways, exploiting systems that exist in plants, rather than adding a gene to a plant to make it work in a completely different manner.

"I believe that plants have the genetic makeup to carry out complex human-like reactions," Joshi explained. "Our approach is to use what exists in the plant system and manipulate that to develop something for human beings. Now we have found the genes in the plants and we are working with those in the lab to regulate them and get more and more sialic acids out of them."


Sources:
Lokesh Joshi, (480) 965-0655
Lokesh.joshi@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>