Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mustard-root map breaks new ground tracking gene expression

12.12.2003


New ’global’ technique a dividend of NSF’s Arabidopsis 2010 effort

A new "gene expression" map is helping scientists track how a complex tissue ultimately arises from the blueprint of thousands of genes.

Focusing on the root of a small flowering mustard plant, Arabidopsis thaliana, a research team led by Duke University biologist Philip Benfey created a detailed mosaic of cells showing where and when about 22,000 of the plant’s roughly 28,000 genes are activated within growing root tissue.



The results, announced in the Dec. 12th issue of the journal Science, are the first to demonstrate "this level of resolution of gene expression on a global basis for any organism," said Benfey. The work, he said, serves as "a proof of principle" that similar approaches can be applied to other plant organs and other organisms.

It also marks the first time researchers have tracked the vast majority of an organism’s genes as they are switched on and off as cells grow, continually divide and ultimately differentiate to build specialized tissue.

The ability to track gene expression on this scale (with each cellular division along a comprehensive front) is critical to answering one of biology’s basic, yet most puzzling, processes: How do distinct, yet coordinated organs and specialized cells arise from the endless division of cells that initially seemed quite similar? For example, how does this complex process with a simple name, development, begin with a single, fertilized cell and ultimately yield a plant with roots, leaves, buds and blooms?

The researchers also found that different types of root cells tended to express particular sets of genes that were clustered together on the plant chromosomes. Understanding these patterns of cell types and gene clusters, Benfey said, could help biologists decipher the genetic machinery of development and eventually lead to new ways to enhance crops.

The research was funded by the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

Three years ago following an international effort, Arabidopsis became the first plant to have its genome sequence completed. NSF, a key funder of the sequencing effort, then launched "Arabidopsis 2010," a program to determine the function of the all of the plant’s genes in this decade. (It, too, is part of a multinational effort.)

The gene-expression map announced in Science resulted from a $2.2 million 2010 project to apply "genomics approaches to finding transcriptional networks."

(Using a gene’s DNA as the template, the transcription process creates strands of RNA, molecules that control the building of proteins and serve as catalysts. A network of various biochemical factors, such as signaling hormones, can affect this process.)

According to Joanne Tornow, a program director in NSF’s Division of Molecular and Cellular Biosciences, "the creation of the root map is a terrific advance forward."

"The process should work with other plant tissues, although beyond the root it may be more difficult to observe changes in gene expression over developmental time," said Tornow.

"But this lays the groundwork for looking at how various biological pathways interlink in transcriptional networks," she said. "There are still thousands of genes in Arabidopsis, and we know almost nothing about their function. By knowing when a gene is expressed and where it is expressed, we get clues about the processes it is involved with and potentially its function as well."

To develop the map, Benfey worked with colleagues at Duke, New York University and the University of Arizona. In Science, they report, "High throughput techniques allowed the harvesting, protoplasting (breaking down of cell walls by enzymes), and sorting of approximately 10 million cells in about 1.5 hours."

To track gene expression over time, they relied upon the fact that a root cell’s advancing stages of development correlate to its distance from the root tip’s growing point.

To track the lineage of individual cells as they developed into specific tissue, they attached marker genes to genes characteristic of each of five different cell types or tissues. The marker genes produce a tell-tale, and therefore traceable, green fluorescent protein (GFP) when the gene they’re attached to is activated.

Then, using methods invented by David Galbraith at the University of Arizona, researchers moved quickly to sort, isolate and identify the fluorescence-activated genes, which glow under ultraviolet light when the gene they’ve marked is being expressed. They conducted the process during three successive stages synchronously across five zones of cells and tissues in the root.

To generate a visual map of 15 "subgrids," the massive amount of data was "digitally reconstructed" with the intensity of gene expression illustrated along a color scale.

According to Benfey, "other genomic studies, in which whole tissues were ground up and their global gene expression profiles determined, certainly generated much useful information. However, critical information on the mechanisms of development was lost. Development occurs at the single cell level, and there’s a dramatic difference from one cell to the next, in terms of its gene expression."

NSF Program Officer: Joanne Tornow, Genes and Genome Systems, 703-292-8439, jtornow@nsf.gov.
Principal Investigator: Philip Benfey, Department of Biology, Duke University, 919-613-8182, philip.benfey@duke.edu.

Additional Investigator: David Galbraith, Professor of Plant Sciences, University of Arizona, 520-621-9153, galbraith@arizona.edu.

Related news releases from Duke University:
http://www.dukenews.duke.edu/news/newsrelease.asp?id=3053&catid=2,46&cpg=newsrelease.asp. Contact at Duke: Dennis Meredith, 919-681-8054, dennis.meredith@duke.edu.

Sean Kearns | National Science Foundation
Further information:
http://www.nsf.gov/od/lpa/news/03/pr03139.htm

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>