Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mustard-root map breaks new ground tracking gene expression

12.12.2003


New ’global’ technique a dividend of NSF’s Arabidopsis 2010 effort

A new "gene expression" map is helping scientists track how a complex tissue ultimately arises from the blueprint of thousands of genes.

Focusing on the root of a small flowering mustard plant, Arabidopsis thaliana, a research team led by Duke University biologist Philip Benfey created a detailed mosaic of cells showing where and when about 22,000 of the plant’s roughly 28,000 genes are activated within growing root tissue.



The results, announced in the Dec. 12th issue of the journal Science, are the first to demonstrate "this level of resolution of gene expression on a global basis for any organism," said Benfey. The work, he said, serves as "a proof of principle" that similar approaches can be applied to other plant organs and other organisms.

It also marks the first time researchers have tracked the vast majority of an organism’s genes as they are switched on and off as cells grow, continually divide and ultimately differentiate to build specialized tissue.

The ability to track gene expression on this scale (with each cellular division along a comprehensive front) is critical to answering one of biology’s basic, yet most puzzling, processes: How do distinct, yet coordinated organs and specialized cells arise from the endless division of cells that initially seemed quite similar? For example, how does this complex process with a simple name, development, begin with a single, fertilized cell and ultimately yield a plant with roots, leaves, buds and blooms?

The researchers also found that different types of root cells tended to express particular sets of genes that were clustered together on the plant chromosomes. Understanding these patterns of cell types and gene clusters, Benfey said, could help biologists decipher the genetic machinery of development and eventually lead to new ways to enhance crops.

The research was funded by the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

Three years ago following an international effort, Arabidopsis became the first plant to have its genome sequence completed. NSF, a key funder of the sequencing effort, then launched "Arabidopsis 2010," a program to determine the function of the all of the plant’s genes in this decade. (It, too, is part of a multinational effort.)

The gene-expression map announced in Science resulted from a $2.2 million 2010 project to apply "genomics approaches to finding transcriptional networks."

(Using a gene’s DNA as the template, the transcription process creates strands of RNA, molecules that control the building of proteins and serve as catalysts. A network of various biochemical factors, such as signaling hormones, can affect this process.)

According to Joanne Tornow, a program director in NSF’s Division of Molecular and Cellular Biosciences, "the creation of the root map is a terrific advance forward."

"The process should work with other plant tissues, although beyond the root it may be more difficult to observe changes in gene expression over developmental time," said Tornow.

"But this lays the groundwork for looking at how various biological pathways interlink in transcriptional networks," she said. "There are still thousands of genes in Arabidopsis, and we know almost nothing about their function. By knowing when a gene is expressed and where it is expressed, we get clues about the processes it is involved with and potentially its function as well."

To develop the map, Benfey worked with colleagues at Duke, New York University and the University of Arizona. In Science, they report, "High throughput techniques allowed the harvesting, protoplasting (breaking down of cell walls by enzymes), and sorting of approximately 10 million cells in about 1.5 hours."

To track gene expression over time, they relied upon the fact that a root cell’s advancing stages of development correlate to its distance from the root tip’s growing point.

To track the lineage of individual cells as they developed into specific tissue, they attached marker genes to genes characteristic of each of five different cell types or tissues. The marker genes produce a tell-tale, and therefore traceable, green fluorescent protein (GFP) when the gene they’re attached to is activated.

Then, using methods invented by David Galbraith at the University of Arizona, researchers moved quickly to sort, isolate and identify the fluorescence-activated genes, which glow under ultraviolet light when the gene they’ve marked is being expressed. They conducted the process during three successive stages synchronously across five zones of cells and tissues in the root.

To generate a visual map of 15 "subgrids," the massive amount of data was "digitally reconstructed" with the intensity of gene expression illustrated along a color scale.

According to Benfey, "other genomic studies, in which whole tissues were ground up and their global gene expression profiles determined, certainly generated much useful information. However, critical information on the mechanisms of development was lost. Development occurs at the single cell level, and there’s a dramatic difference from one cell to the next, in terms of its gene expression."

NSF Program Officer: Joanne Tornow, Genes and Genome Systems, 703-292-8439, jtornow@nsf.gov.
Principal Investigator: Philip Benfey, Department of Biology, Duke University, 919-613-8182, philip.benfey@duke.edu.

Additional Investigator: David Galbraith, Professor of Plant Sciences, University of Arizona, 520-621-9153, galbraith@arizona.edu.

Related news releases from Duke University:
http://www.dukenews.duke.edu/news/newsrelease.asp?id=3053&catid=2,46&cpg=newsrelease.asp. Contact at Duke: Dennis Meredith, 919-681-8054, dennis.meredith@duke.edu.

Sean Kearns | National Science Foundation
Further information:
http://www.nsf.gov/od/lpa/news/03/pr03139.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>