Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers probe how microbes speed up acid production at mining sites

12.12.2003


Microbes are everywhere, but when they are in mined soils, they react with the mineral pyrite to speed up acidification of mine run-off water. Scientists have been trying to understand the chemistry behind this process that eventually leads to widespread acidification of water bodies and deposition of heavy metals. What a new study has found seems to defy the laws of chemistry: microbes react with the pyrite surface, coating it with chemicals that would be expected to hinder further reactions. Despite the formation of such coatings, however, microbe-mediated reactions occur tens of thousands of times faster than when no microbes are present.



’’That’s a puzzle,’’ said Alfred Spormann, a co-principal investigator on the study. ’’This changed surface chemistry should slow down the microbial oxidation but it doesn’t.’’

The collaborative study was led by co-principal investigators Scott Fendorf, Gordon Brown and Spormann at Stanford. Dartmouth Assistant Professor Benjamin Bostick, Fendorf’s former doctoral student who coordinated the research effort, will present the group’s findings Thursday, Dec. 11 at this year’s San Francisco meeting of the American Geophysical Union (AGU). The AGU is an international scientific society with more than 35,000 members dedicated to advancing the understanding of Earth and its environment.


In mines, oxygen from the air initiates chemical reactions with pyrite, also known as fool’s gold. Microbes subsequently react with the pyrite in cyclic processes that result in the rapid production of large amounts of sulfuric acid. The research team wanted to understand how the activity of the microorganisms controls the chemistry on mineral surfaces, and how that chemistry, in turn, controls the activity of the microorganisms. Specifically, they wanted to find out what kinds of iron species and precipitates can be found on microbe-treated pyrite surfaces.

The researchers grew the bacteria Thiobacillus ferrooxidans and Thiobacillus thiooxidans, forcing them to ’’eat’’ iron or sulfur, the elements that make up pyrite. They examined the products of metabolism using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy. The results give a molecular view of how microbes change the form of the mineral. The bacteria produced surface coatings made up of iron sulfate and the iron oxide goethite. Also, different metabolism products formed when both types of bacteria were studied together compared to when only one type was used. The amount of oxidation produced by the mixed species was not additive compared to oxidation by individual species, however. ’’The projects show that there is a fundamental difference between how one organism carries out a process and how a group does so,’’ said Bostick.

This study is a continuation of a pioneering molecular-level study by the same team, looking at how heavy metal contaminants partition between a biofilm and a metal surface. The researchers found then that surface type and metal concentration affect the distribution of the metal and the types of products formed.

The researchers will continue to experimentally reproduce and study the complex natural system of microbes and minerals, starting with simple systems and building complexity by sequentially adding more and different microorganisms.

The results may provide insight into other problems, such as tooth decay and metal-pipe corrosion, that arise from the interaction between microbes and the surfaces on which they reside.

Czerne M. Reid | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.agu.org/meetings/fm03/
http://www.stanford.edu/dept/news/html/releases.html

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>