Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Engineer Mouse Embryonic Stem Cells to Form Sperm Cell Precursors

11.12.2003

For the first time, researchers using laboratory techniques alone and no animal hosts have isolated sex-cell precursors from mouse embryos, coaxed the cells into a sperm-like form, used them to fertilize mouse eggs, and ultimately formed earlystage embryos.

The research may offer a breakthrough tool for studies of embryonic cells and gene delivery, potentially helping scientists develop treatments for infertility and providing insight into the growth of certain tumors.

The researchers, led by George Daley of Children’s Hospital and the Dana Farber Cancer Institute in Boston and Niels Geijsen of Massachusetts General Hospital, also in Boston, report their findings in the December 10, 2003 Nature (online).

Researchers are excited about stem cells because they can be coaxed into forming a number of tissues, from bone to lung, while mature cells are limited to their given role.

The study builds upon nearly a decade of research at the Whitehead Institute for Biomedical Research, Harvard University, and the National Science Foundation (NSF) Biotechnology Process Engineering Center (BPEC) at the Massachusetts Institute of Technology (MIT), all in Cambridge, Mass., and most recently at Children’s Hospital Boston, the Dana Farber Cancer Institute and Massachusetts General Hospital.

Geijsen, Daley and their colleagues began their process by culturing mouse embryonic stem cells to form globular cell clusters called embryoid bodies.

In these embryoid bodies, cells differentiated into primordial germ cells (sex cell precursors), which the researchers were able to tag with a fluorescent chemical. The tag enabled the team to isolate and track the individual germ cells as the embryoid body developed.

Once the researchers had identified and isolated the germ cells, they were able to sustain continuous cell lines in a laboratory.

The researchers also found that embryoid bodies that were allowed to grow contained cells that differentiated into mature, male, sex cells similar to sperm, but they lacked tails. The team isolated those cells and injected them directly into mouse egg cells.

The eggs essentially became fertilized, and an entirely new line of early-stage mouse embryos began to grow.

In September, a team led by Toshiaki Noce of Mitsubishi Kagaku Institute of Life Sciences in Japan reported that they had derived sperm cells from embryonic stem cells. However, Gejsen, Daley and their colleagues are the first to complete the process through to the embryo stage using only laboratory techniques.

"The big difference is that our work was entirely done in vitro," says Geijsen, "whereas Noce’s group transplanted the primordial germ cells back into mouse testes to let the sperm develop."

Both approaches offer unique advantages, with the earlier study yielding mature sperm with tails, and the recent study providing the flexibility of in vitro ("in glass," or outside of an animal) experimentation that may lead to more controlled studies.

Geijsen and his colleagues also found that while many primordial germ cells formed in the laboratory environment during their study, only a few developed further into the sperm precursor cells.

"We want to understand what is missing, what we would need to make more germ cells," says Geijsen. "This understanding might have applications for treatment of male infertility," he added, for the condition can be caused by a failure of sperm to fully mature within the testicles.

The researchers also hope to use the germ cell lines to study "imprints," genetic instructions that regulate certain genes yet are missing from embryonic germ cells.

"The erasure of imprints in the primordial germ cells could have implications in cancer research," says Geijsen. "In certain tumors, imprints are erased, leading to over- expression of the imprinted gene. Since many imprinted genes have a function in controlling cell proliferation, this loss of imprinting can cause the cell to grow out of control," Geijsen added.

If the researchers can determine what causes the loss of imprints in embryonic germ cells, they can attempt to find, and counter, the mechanism that is erasing imprints in cancer cells.

The findings also contribute detailed knowledge regarding the general development of stem cells, some of the workhorses of gene therapy research and a principal target of study at NSF’s BPEC where Daley also serves as a researcher.

"Daley and his colleagues provide medical and biological expertise to BPEC, and in collaboration with other life science and engineering experts at the center, they conduct the basic research necessary for a complete understanding of stem cells," says Sohi Rastegar, the NSF program director who oversees the agency’s support of BPEC and several other bioengineering centers.

"To develop effective gene therapy for difficult diseases such as sickle cell anemia and muscular dystrophy, the use of embryonic stem cells is one of the most promising approaches and to that end fundamental knowledge of stem cells is a prerequisite," says Rastegar.

In addition to NSF, this research was also supported by the National Institutes of Health, the Dutch Cancer Society, the Leukemia and Lymphoma Society and the Harvard Society of Fellows.

Josh Chamot | National Science Foundation
Further information:
http://www.childrenshospital.org/pressroom/news.html
http://www.hms.harvard.edu/dms/bbs/fac/daleyge.html
http://www.nsf.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>