Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Engineer Mouse Embryonic Stem Cells to Form Sperm Cell Precursors

11.12.2003

For the first time, researchers using laboratory techniques alone and no animal hosts have isolated sex-cell precursors from mouse embryos, coaxed the cells into a sperm-like form, used them to fertilize mouse eggs, and ultimately formed earlystage embryos.

The research may offer a breakthrough tool for studies of embryonic cells and gene delivery, potentially helping scientists develop treatments for infertility and providing insight into the growth of certain tumors.

The researchers, led by George Daley of Children’s Hospital and the Dana Farber Cancer Institute in Boston and Niels Geijsen of Massachusetts General Hospital, also in Boston, report their findings in the December 10, 2003 Nature (online).

Researchers are excited about stem cells because they can be coaxed into forming a number of tissues, from bone to lung, while mature cells are limited to their given role.

The study builds upon nearly a decade of research at the Whitehead Institute for Biomedical Research, Harvard University, and the National Science Foundation (NSF) Biotechnology Process Engineering Center (BPEC) at the Massachusetts Institute of Technology (MIT), all in Cambridge, Mass., and most recently at Children’s Hospital Boston, the Dana Farber Cancer Institute and Massachusetts General Hospital.

Geijsen, Daley and their colleagues began their process by culturing mouse embryonic stem cells to form globular cell clusters called embryoid bodies.

In these embryoid bodies, cells differentiated into primordial germ cells (sex cell precursors), which the researchers were able to tag with a fluorescent chemical. The tag enabled the team to isolate and track the individual germ cells as the embryoid body developed.

Once the researchers had identified and isolated the germ cells, they were able to sustain continuous cell lines in a laboratory.

The researchers also found that embryoid bodies that were allowed to grow contained cells that differentiated into mature, male, sex cells similar to sperm, but they lacked tails. The team isolated those cells and injected them directly into mouse egg cells.

The eggs essentially became fertilized, and an entirely new line of early-stage mouse embryos began to grow.

In September, a team led by Toshiaki Noce of Mitsubishi Kagaku Institute of Life Sciences in Japan reported that they had derived sperm cells from embryonic stem cells. However, Gejsen, Daley and their colleagues are the first to complete the process through to the embryo stage using only laboratory techniques.

"The big difference is that our work was entirely done in vitro," says Geijsen, "whereas Noce’s group transplanted the primordial germ cells back into mouse testes to let the sperm develop."

Both approaches offer unique advantages, with the earlier study yielding mature sperm with tails, and the recent study providing the flexibility of in vitro ("in glass," or outside of an animal) experimentation that may lead to more controlled studies.

Geijsen and his colleagues also found that while many primordial germ cells formed in the laboratory environment during their study, only a few developed further into the sperm precursor cells.

"We want to understand what is missing, what we would need to make more germ cells," says Geijsen. "This understanding might have applications for treatment of male infertility," he added, for the condition can be caused by a failure of sperm to fully mature within the testicles.

The researchers also hope to use the germ cell lines to study "imprints," genetic instructions that regulate certain genes yet are missing from embryonic germ cells.

"The erasure of imprints in the primordial germ cells could have implications in cancer research," says Geijsen. "In certain tumors, imprints are erased, leading to over- expression of the imprinted gene. Since many imprinted genes have a function in controlling cell proliferation, this loss of imprinting can cause the cell to grow out of control," Geijsen added.

If the researchers can determine what causes the loss of imprints in embryonic germ cells, they can attempt to find, and counter, the mechanism that is erasing imprints in cancer cells.

The findings also contribute detailed knowledge regarding the general development of stem cells, some of the workhorses of gene therapy research and a principal target of study at NSF’s BPEC where Daley also serves as a researcher.

"Daley and his colleagues provide medical and biological expertise to BPEC, and in collaboration with other life science and engineering experts at the center, they conduct the basic research necessary for a complete understanding of stem cells," says Sohi Rastegar, the NSF program director who oversees the agency’s support of BPEC and several other bioengineering centers.

"To develop effective gene therapy for difficult diseases such as sickle cell anemia and muscular dystrophy, the use of embryonic stem cells is one of the most promising approaches and to that end fundamental knowledge of stem cells is a prerequisite," says Rastegar.

In addition to NSF, this research was also supported by the National Institutes of Health, the Dutch Cancer Society, the Leukemia and Lymphoma Society and the Harvard Society of Fellows.

Josh Chamot | National Science Foundation
Further information:
http://www.childrenshospital.org/pressroom/news.html
http://www.hms.harvard.edu/dms/bbs/fac/daleyge.html
http://www.nsf.gov

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>