Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Busy Bees: Computer Vision System Automates Analysis of Bee Activity for Insight into Biologically Inspired Robot Design

11.12.2003


Georgia Tech researchers led by Tucker Balch from the College of Computing are gathering data on the behavior of bees and ants using a compter vision system. Software can recognize which marked bee is doing which job.

Georgia Tech Photo: Nicole Cappello


Georgia Tech researcher Tucker Balch examines bees whose behavior is being studied for potential implications on the efficient behavior of robots. What they learn may help engineers organize colonies of cooperating robots.

Georgia Tech Photo: Nicole Cappello


A new computer vision system for automated analysis of animal movement -- honey bee activities, in particular -- is expected to accelerate animal behavior research, which also has implications for biologically inspired design of robots and computers.

The animal movement analysis system is part of the BioTracking Project, an effort conducted by Georgia Institute of Technology robotics researchers led by Tucker Balch, an assistant professor of computing.

"We believe the language of behavior is common between robots and animals," Balch said. "That means, potentially, that we could videotape ants for a long period of time, learn their ’program’ and run it on a robot."



Social insects, such as ants and bees, represent the existence of successful large-scale, robust behavior forged from the interaction of many, simple individuals, Balch explained. Such behavior can offer ideas on how to organize a cooperating colony of robots capable of complex operations.

To expedite the understanding of such behavior, Balch’s team developed a computer vision system that automates analysis of animal movement -- once an arduous and time-consuming task. Researchers are using the system to analyze data on the sequential movements that encode information -- for example in bees, the location of distant food sources, Balch said. He will present the research at the Second International Workshop on the Mathematics and Algorithms of Social Insects on Dec. 16-17 at Georgia Tech.

With an 81.5 percent accuracy rate, the system can automatically analyze bee movements and label them based on examples provided by human experts. This level of labeling accuracy is high enough to allow researchers to build a subsequent system to accurately determine the behavior of a bee from its sequence of motions, Balch explained.

For example, one sequence of motions bees commonly perform are waggle dances consisting of arcing to the right, waggling (walking in a generally straight line while oscillating left and right), arcing to the left, waggling and so on. These motions encode the locations of distant food sources, according to Cornell University Professor of Biology Thomas Seeley, who has collaborated with Balch on this project. Balch is also working with Professor Deborah Gordon of Stanford University on related work with ants.

Balch’s animal movement analysis system has several components. First, researchers shoot 15 minutes of videotape of bees -- some of which are marked with a bright-colored paint and returned to an observation hive. Then computer vision-based tracking software converts the video of the marked bees into x- and y-coordinate location information for each animal in each frame of the footage. Some segments of this data are hand labeled by a researcher and then used as motion examples for the automated analysis system.

In future work, Balch and his colleagues will build a system that can learn executable models of these behaviors and then run the models in simulation. These simulations, Balch explained, would reveal the accuracy of the models. Researchers don’t yet know if these models will yield better computer programming algorithms, though they are hopeful based on what previous research has revealed.

"Computer scientists have borrowed some of the algorithms discovered by biologists working with insects to challenging problems in computing," Balch said. "One example is network routing, which dictates the path data takes across the Internet. In this case the insect-based network routing algorithm, investigated by Marco Dorigo, is the best solution to date."

But challenges lie ahead for researchers. They will have to grapple with differences between the motor and sensory capabilities of robots and insects, Balch added.

Balch’s research team members include graduate student Adam Feldman, Assistant Professor of Computing Frank Dellaert and researcher Zia Khan. More information about their project is available at borg.cc.gatech.edu/biotracking. The project is funded by a grant from the National Science Foundation.

In related research with Professor Kim Wallen at Emory University’s Yerkes National Primate Research Center, Balch and Khan are also observing monkeys with a similar computer vision system. They hope these studies will yield behavior models that can be implemented in computer code.

The research team is learning about the spatial memory of and social interaction among monkeys. Already, they can track the movements of individual monkeys as they search for and find hidden treats in a large enclosure. Later, they want to observe a troop of 60 to 80 monkeys living together in a larger compound.

So far, researchers have learned that male and female monkeys have different spatial memories. Males apparently remember the physical distance to food, while females follow landmarks to find treats, Balch says.

"We’re involved to measure precisely where the monkeys go and how long it takes them to find the food," Balch explains. "We use the information from experiments to test hypotheses on spatial memory. We’re more interested in the social systems among these animals. But we need this basic capability to track monkeys in 3D. So this work is a first step in this direction."

Ultimately, Balch and his colleagues in the Georgia Tech College of Computing’s "Borg Lab" -- named after the Borg of "Star Trek" fame -- want to use this animal behavior information to design robots that work effectively with people in dynamic, noisy and unknown environments such as those faced by military and law enforcement officials.

Balch will present his research team’s findings on the bee movement system at the December workshop to prominent biologists, mathematicians, engineers and computer scientists who gather to share ideas about mathematical and algorithmic models of social insect behavior. Balch organized the workshop with Carl Anderson, a visiting assistant professor of natural systems in the Georgia Tech School of Industrial and Systems Engineering. For more information on the workshop, see www.insects.gatech.edu.

Jane Sanders | Georgia Tech
Further information:
http://gtresearchnews.gatech.edu/newsrelease/bees.htm

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>