Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep boosts ability to learn language, University of Chicago researchers find

09.10.2003


Scientists at the University of Chicago have demonstrated that sleeping has an important and previously unrecognized impact on improving people’s ability to learn language.



Researchers find that ability of students to retain knowledge about words is improved by sleep, even when the students seemed to forget some of what they learned during the day before the next night’s sleep. This paper, "Consolidation During Sleep of Perceptual Learning of Spoken Language," is being published in the Thursday, Oct. 9 issue of the journal Nature. The paper was prepared by researcher Kimberly Fenn, Howard Nusbaum, Professor of Psychology, and Daniel Margoliash, Professor in Organismal Biology and Anatomy.

"Sleep has at least two separate effects on learning," the authors write. "Sleep consolidates memories, protecting them against subsequent interference or decay. Sleep also appears to ’recover’ or restore memories."


Scientists have long hypothesized that sleep has an impact on learning, but the new study is the first to provide scientific evidence that brain activity promotes higher-level types of learning while we sleep.

Although the study dealt specifically with word learning, the findings may be relevant to other learning, Nusbaum said. "We have known that people learn better if they learn smaller bits of information over a period of days rather than all at once. This research could show how sleep helps us retain what we learn."

In fact, the idea for the study arose from discussions Nusbaum and Fenn had with Margoliash, who studies vocal (song) learning in birds. "We were surprised several years ago to discover that birds apparently ’dream of singing’ and this might be important for song learning," Margoliash said.

"Ultimately, our discussions stimulated a research design first proposed by Kim Fenn. The interdisciplinary nature of the research and the free exchange of ideas between animal and human work is also very exciting for us," Margoliash added.

For their study, the team tested college student understanding of a series of common words produced in a mechanical, robotic way by a voice synthesizer that made the words difficult to understand. They first measured the students’ ability to recognize the words. They then trained them to recognize the words and then tested them again to see how effective the training was.

None of the students heard the same word more than once, so they had to learn how to figure out the pattern of sounds the synthesizer was making. "It is something like learning how to understand someone speaking with a foreign accent." Nusbaum said.

The team tested three groups of students. The control group was tested one hour after they were trained and recognized 54 percent of the words, as opposed to the 21 percent they recognized before training.

The scientists next trained students at 9 a.m. and tested them at 9 p.m., 12 hours later. During that time, the students had lost much of their learning and only made a 10 percentage point gain over their pre-test scores.

A third group was tested at 9 a.m. after having been trained at 9 p.m. After a night’s sleep, those students improved their performance by 19 percentage points over their pre-test scores.

The students who were trained at 9 a.m. were tested again after a night’s sleep, and their scores improved to the same level as the other students who had had a night’s sleep.

"We were shocked by what we found," Nusbaum said. "We were particularly intrigued by the loss of learning the students experienced during the day and then recovered."

Researchers could not determine if the reduction in performance during the day was due to students forgetting what they’d learned, their listening to other speech or their thinking about unrelated issues during the day.

"If performance is reduced by interference, sleep might strengthen relevant associations and weaken irrelevant associations, improving access to relevant memories," the authors write. If information was forgotten, sleep might help people restore a memory.

Margoliash said, "Although these initial results cannot explain what is lost during the day, the question is very amenable to follow-up experiments."

Fenn added, "We are currently considering an FMRI study to investigate brain activity at the end of a day’s learning compared with activity patterns after a night’s sleep."

Catherine Gianaro | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>