Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep boosts ability to learn language, University of Chicago researchers find

09.10.2003


Scientists at the University of Chicago have demonstrated that sleeping has an important and previously unrecognized impact on improving people’s ability to learn language.



Researchers find that ability of students to retain knowledge about words is improved by sleep, even when the students seemed to forget some of what they learned during the day before the next night’s sleep. This paper, "Consolidation During Sleep of Perceptual Learning of Spoken Language," is being published in the Thursday, Oct. 9 issue of the journal Nature. The paper was prepared by researcher Kimberly Fenn, Howard Nusbaum, Professor of Psychology, and Daniel Margoliash, Professor in Organismal Biology and Anatomy.

"Sleep has at least two separate effects on learning," the authors write. "Sleep consolidates memories, protecting them against subsequent interference or decay. Sleep also appears to ’recover’ or restore memories."


Scientists have long hypothesized that sleep has an impact on learning, but the new study is the first to provide scientific evidence that brain activity promotes higher-level types of learning while we sleep.

Although the study dealt specifically with word learning, the findings may be relevant to other learning, Nusbaum said. "We have known that people learn better if they learn smaller bits of information over a period of days rather than all at once. This research could show how sleep helps us retain what we learn."

In fact, the idea for the study arose from discussions Nusbaum and Fenn had with Margoliash, who studies vocal (song) learning in birds. "We were surprised several years ago to discover that birds apparently ’dream of singing’ and this might be important for song learning," Margoliash said.

"Ultimately, our discussions stimulated a research design first proposed by Kim Fenn. The interdisciplinary nature of the research and the free exchange of ideas between animal and human work is also very exciting for us," Margoliash added.

For their study, the team tested college student understanding of a series of common words produced in a mechanical, robotic way by a voice synthesizer that made the words difficult to understand. They first measured the students’ ability to recognize the words. They then trained them to recognize the words and then tested them again to see how effective the training was.

None of the students heard the same word more than once, so they had to learn how to figure out the pattern of sounds the synthesizer was making. "It is something like learning how to understand someone speaking with a foreign accent." Nusbaum said.

The team tested three groups of students. The control group was tested one hour after they were trained and recognized 54 percent of the words, as opposed to the 21 percent they recognized before training.

The scientists next trained students at 9 a.m. and tested them at 9 p.m., 12 hours later. During that time, the students had lost much of their learning and only made a 10 percentage point gain over their pre-test scores.

A third group was tested at 9 a.m. after having been trained at 9 p.m. After a night’s sleep, those students improved their performance by 19 percentage points over their pre-test scores.

The students who were trained at 9 a.m. were tested again after a night’s sleep, and their scores improved to the same level as the other students who had had a night’s sleep.

"We were shocked by what we found," Nusbaum said. "We were particularly intrigued by the loss of learning the students experienced during the day and then recovered."

Researchers could not determine if the reduction in performance during the day was due to students forgetting what they’d learned, their listening to other speech or their thinking about unrelated issues during the day.

"If performance is reduced by interference, sleep might strengthen relevant associations and weaken irrelevant associations, improving access to relevant memories," the authors write. If information was forgotten, sleep might help people restore a memory.

Margoliash said, "Although these initial results cannot explain what is lost during the day, the question is very amenable to follow-up experiments."

Fenn added, "We are currently considering an FMRI study to investigate brain activity at the end of a day’s learning compared with activity patterns after a night’s sleep."

Catherine Gianaro | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>