Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue biologists’ spotlight solves mysteries of photosynthesis, metabolism

06.10.2003


The Purdue University biologists who determined the structure of the cytochrome protein complex, which is critical for photosynthesis, are, from left, professor Janet Smith, associate research scientist Huamin Zhang, visiting scholar Genji Kurisu and distinguished professor William Cramer. (Purdue Department of Biological Sciences photo/T. Geders)


Shown is an illustration of the cytochrome b6f protein complex, which is critical for photosynthesis. The eight colors represent the eight protein components of the cytochrome complex; the cylinders are the 26 segments of the complex that cross the photosynthetic membrane; the colored rings made of little balls that are embedded in protein are the groups that actually carry the electrons stimulated by light absorbed in photosynthesis. Purdue University biologists determined the structure of the complex using X-ray crystallography. (Purdue Department of Biological Sciences illustration/H. Zhang)


A complete molecular-scale picture of how plants convert sunlight to chemical energy has been obtained at Purdue University, offering potential new insights into animal metabolism as well.

Using advanced imaging techniques, a team of Purdue biologists has determined the structure of the cytochrome, a protein complex that governs photosynthesis in a blue-green bacterium. While their work does not immediately suggest any industrial applications, it does reveal a wealth of information not only about a chemical process crucial to all life on the planet, but also about how cells handle and distribute energy. According to team member William Cramer, the study is a great leap forward in our understanding of photosynthesis.

"Where we once could see merely the tip of the iceberg, we can now perceive the entire mechanism of photosynthesis," said Cramer, the Henry Koffler Distinguished Professor of Biological Sciences in Purdue’s School of Science. "Before we found a way to crystallize the cytochrome, we had a general picture of the photosynthetic process, but possessed only a fraction of a percent of the information we now have. Now that we can examine these proteins closely with X-ray crystallography, it could lead to knowledge about how all cells exchange energy with their environment."



Cramer also said that the study is an important contribution to the young field of proteomics research because there is little data on the important family of membrane-embedded proteins in the total protein database.

"Membrane proteins are involved in a cell’s interactions with its environment, making them an essential component of metabolism," he said. "However, they are difficult to crystallize for study. This research could clarify our understanding of energy flow in human cells as well, giving us better insight into respiration and the absorption of antioxidants in animal cells."

The report appears today (Thursday, 10/2) in the journal Science’s online edition, Science Express. The first two authors on the manuscript are Genji Kurisu, visiting scholar from Osaka University, Japan, and Huamin Zhang, associate research scientist in the Department of Biological Sciences at Purdue, who made major contributions to the crystallographic and biochemical part of the analysis.

The report paints a picture of the complex motion of electrons and protons across the bacterium’s cell membrane, the boundary between the cell and its surroundings.

"Plant cell membranes are like the two ends of a battery," said Janet Smith, professor of biological sciences and the team member responsible for much of the structure analysis. "They are positive on the inside and negative on the outside, and they are charged up when solar energy excites electrons from hydrogen within the cell. The electrons travel up into the cell membrane via proteins that conduct them just like wires. Of course, because of their high energy level, the electrons want to ’fall back’ like water over a dam, releasing the energy a plant harnesses to stay alive."

While this general picture has been common knowledge to scientists for decades, the complex motion of electrons and protons in the membrane have not.

"It’s a bit like watching electrons move through a computer chip," Smith said. "A microprocessor has far more complex and numerous routes for its electricity to follow than, say, a flashlight, which only has one. But while a chip uses electrons to flip tiny digital switches back and forth for calculations, the membrane uses them to drive the cell’s metabolism."

The cell that provided the proteins for the team’s work was a cyanobacterium, a single-celled thermophile plant commonly found in hot springs such as those in Yellowstone. The particular cyanobacterium used in these studies was isolated by Swiss researchers at a hot spring in Iceland.

While animals do not employ photosynthesis, their cells do make use of similar proteins for respiration. The similarities could lead to a better understanding of our own metabolic processes.

"What we see when we examine these proteins is the nature of their partial similarity," said Cramer. "The differences can now be explored more easily."

Examining the membrane proteins has itself been the challenge for the research team, which is reaping the benefits of its breakthrough work with protein crystallization. While proteomics specialists have been crystallizing protein molecules for years to obtain their structure, membrane proteins have proven difficult because they do not dissolve in water, a crucial step in the crystallization process.

"This difficulty has left a gap in our knowledge of membrane proteins, which total about 30 percent of the proteins in living things," Cramer said. "After finding a way to crystallize a membrane protein earlier this year, it only took a few months before we were able to look at photosynthesis in such detail."

The team is hopeful that their method can be applied to other membrane proteins, which they consider a variety of vast untapped potential.

"If cells were countries, membrane proteins would control all the international commerce," Cramer said. "They are the border guards that regulate all the energy transfer and material exchange across the boundary between the cell and its environment. If you want to get a drug into a cell where it can be of use, you have to deal with the membrane proteins – that’s why they’re so tempting a subject to study."

Funding for the research was provided in part by the National Institute of General Medical Sciences (NIGMS), a branch of the National Institutes of Health. NIGMS’s Dr. Peter Preusch agreed with Cramer’s assessment of the value of membrane protein research, saying the team’s work could lead to significant discoveries.

"New insights provided by Dr. Cramer’s elegant studies underscore the value of searching for biological secrets in model systems," he said. "The findings will advance the study of energy metabolism in humans."

Members of the team are affiliated with several research centers at Purdue, including the Markey Center for Structural Biology, the Bindley Bioscience Center at Discovery Park, the Interdepartmental Program in Biochemistry and Molecular Biology, and the Purdue Cancer Center.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: William Cramer, (765) 494-4956, wac@bilbo.bio.purdue.edu

Janet Smith, (765) 494-9246, smithj@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031002.Cramer.photo.html
http://news.uns.purdue.edu/UNS/html4ever/030505.Cramer.crystal.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>