Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue biologists’ spotlight solves mysteries of photosynthesis, metabolism

06.10.2003


The Purdue University biologists who determined the structure of the cytochrome protein complex, which is critical for photosynthesis, are, from left, professor Janet Smith, associate research scientist Huamin Zhang, visiting scholar Genji Kurisu and distinguished professor William Cramer. (Purdue Department of Biological Sciences photo/T. Geders)


Shown is an illustration of the cytochrome b6f protein complex, which is critical for photosynthesis. The eight colors represent the eight protein components of the cytochrome complex; the cylinders are the 26 segments of the complex that cross the photosynthetic membrane; the colored rings made of little balls that are embedded in protein are the groups that actually carry the electrons stimulated by light absorbed in photosynthesis. Purdue University biologists determined the structure of the complex using X-ray crystallography. (Purdue Department of Biological Sciences illustration/H. Zhang)


A complete molecular-scale picture of how plants convert sunlight to chemical energy has been obtained at Purdue University, offering potential new insights into animal metabolism as well.

Using advanced imaging techniques, a team of Purdue biologists has determined the structure of the cytochrome, a protein complex that governs photosynthesis in a blue-green bacterium. While their work does not immediately suggest any industrial applications, it does reveal a wealth of information not only about a chemical process crucial to all life on the planet, but also about how cells handle and distribute energy. According to team member William Cramer, the study is a great leap forward in our understanding of photosynthesis.

"Where we once could see merely the tip of the iceberg, we can now perceive the entire mechanism of photosynthesis," said Cramer, the Henry Koffler Distinguished Professor of Biological Sciences in Purdue’s School of Science. "Before we found a way to crystallize the cytochrome, we had a general picture of the photosynthetic process, but possessed only a fraction of a percent of the information we now have. Now that we can examine these proteins closely with X-ray crystallography, it could lead to knowledge about how all cells exchange energy with their environment."



Cramer also said that the study is an important contribution to the young field of proteomics research because there is little data on the important family of membrane-embedded proteins in the total protein database.

"Membrane proteins are involved in a cell’s interactions with its environment, making them an essential component of metabolism," he said. "However, they are difficult to crystallize for study. This research could clarify our understanding of energy flow in human cells as well, giving us better insight into respiration and the absorption of antioxidants in animal cells."

The report appears today (Thursday, 10/2) in the journal Science’s online edition, Science Express. The first two authors on the manuscript are Genji Kurisu, visiting scholar from Osaka University, Japan, and Huamin Zhang, associate research scientist in the Department of Biological Sciences at Purdue, who made major contributions to the crystallographic and biochemical part of the analysis.

The report paints a picture of the complex motion of electrons and protons across the bacterium’s cell membrane, the boundary between the cell and its surroundings.

"Plant cell membranes are like the two ends of a battery," said Janet Smith, professor of biological sciences and the team member responsible for much of the structure analysis. "They are positive on the inside and negative on the outside, and they are charged up when solar energy excites electrons from hydrogen within the cell. The electrons travel up into the cell membrane via proteins that conduct them just like wires. Of course, because of their high energy level, the electrons want to ’fall back’ like water over a dam, releasing the energy a plant harnesses to stay alive."

While this general picture has been common knowledge to scientists for decades, the complex motion of electrons and protons in the membrane have not.

"It’s a bit like watching electrons move through a computer chip," Smith said. "A microprocessor has far more complex and numerous routes for its electricity to follow than, say, a flashlight, which only has one. But while a chip uses electrons to flip tiny digital switches back and forth for calculations, the membrane uses them to drive the cell’s metabolism."

The cell that provided the proteins for the team’s work was a cyanobacterium, a single-celled thermophile plant commonly found in hot springs such as those in Yellowstone. The particular cyanobacterium used in these studies was isolated by Swiss researchers at a hot spring in Iceland.

While animals do not employ photosynthesis, their cells do make use of similar proteins for respiration. The similarities could lead to a better understanding of our own metabolic processes.

"What we see when we examine these proteins is the nature of their partial similarity," said Cramer. "The differences can now be explored more easily."

Examining the membrane proteins has itself been the challenge for the research team, which is reaping the benefits of its breakthrough work with protein crystallization. While proteomics specialists have been crystallizing protein molecules for years to obtain their structure, membrane proteins have proven difficult because they do not dissolve in water, a crucial step in the crystallization process.

"This difficulty has left a gap in our knowledge of membrane proteins, which total about 30 percent of the proteins in living things," Cramer said. "After finding a way to crystallize a membrane protein earlier this year, it only took a few months before we were able to look at photosynthesis in such detail."

The team is hopeful that their method can be applied to other membrane proteins, which they consider a variety of vast untapped potential.

"If cells were countries, membrane proteins would control all the international commerce," Cramer said. "They are the border guards that regulate all the energy transfer and material exchange across the boundary between the cell and its environment. If you want to get a drug into a cell where it can be of use, you have to deal with the membrane proteins – that’s why they’re so tempting a subject to study."

Funding for the research was provided in part by the National Institute of General Medical Sciences (NIGMS), a branch of the National Institutes of Health. NIGMS’s Dr. Peter Preusch agreed with Cramer’s assessment of the value of membrane protein research, saying the team’s work could lead to significant discoveries.

"New insights provided by Dr. Cramer’s elegant studies underscore the value of searching for biological secrets in model systems," he said. "The findings will advance the study of energy metabolism in humans."

Members of the team are affiliated with several research centers at Purdue, including the Markey Center for Structural Biology, the Bindley Bioscience Center at Discovery Park, the Interdepartmental Program in Biochemistry and Molecular Biology, and the Purdue Cancer Center.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: William Cramer, (765) 494-4956, wac@bilbo.bio.purdue.edu

Janet Smith, (765) 494-9246, smithj@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031002.Cramer.photo.html
http://news.uns.purdue.edu/UNS/html4ever/030505.Cramer.crystal.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>