Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we see red when looking at ocean plants

18.09.2003


Rutgers marine scientists say phytoplankton changed color 250 million years ago

Green was the dominant color for plants both on land and in the ocean until about 250 million years ago when changes in the ocean’s oxygen content - possibly sparked by a cataclysmic event - helped bring basic ocean plants with a red color to prominence - a status they retain today. That’s the view of a group led by marine scientists from Rutgers, The State University of New Jersey, in a paper, "The Evolutionary Inheritance of Elemental Stoichiometry in Marine Phytoplankton" in the journal Nature, published Thursday (Sept. 18).

Studying ancient fossils plus current species of microscopic ocean plants called phytoplankton, the scientists found evidence that a "phytoplankton schism" took place after a global ocean oxygen depletion killed 85 percent of the organisms living in the ocean about 250 million years ago at the end of the Permian era. "This paved the way for the evolution of red phytoplankton," said one of the paper’s authors, Paul G. Falkowski, professor in the Environmental Biophysics and Molecular Ecology Program at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). Falkowski has a joint appointment with Rutgers’ Department of Geological Sciences.



The Permian era, prior to the advent of the dinosaurs, ended in a global extinction scientists believe may have been linked to extraterrestrial collisions or earthly eruptions or explosions.

"Plants on land are green, and they inherited the cell components that gave them a green color about 400 million years ago," Falkowski said. "But most of plants or phytoplankton in the ocean are red - they inherited their pigments about 250 million years ago. Our paper suggests that a global ocean oxygen depletion changed the chemistry of the ocean and selected for red phytoplankton. The ocean has been dominated by the red line ever since."


The research is supported under the National Science Foundation’s Biocomplexity Program. Lead author on the paper is Antonietta Quigg, formerly of IMCS and now at Texas A&M University. Besides Falkowski, co-authors include Zoe V. Finkel and Andrew J. Irwin of IMCS, Yair Rosenthal of IMCS and the Department of Geological Sciences, Oscar Schofield of IMCS and Rutgers’ Coastal Ocean Observation Laboratory and John R. Reinfelder of Rutgers’ Department of Environmental Sciences. Co-authors from Princeton University Department of Geosciences are Tung-Yuan Ho and Francois M.M. Morel.

Bill Haduch | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>