Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we see red when looking at ocean plants

18.09.2003


Rutgers marine scientists say phytoplankton changed color 250 million years ago

Green was the dominant color for plants both on land and in the ocean until about 250 million years ago when changes in the ocean’s oxygen content - possibly sparked by a cataclysmic event - helped bring basic ocean plants with a red color to prominence - a status they retain today. That’s the view of a group led by marine scientists from Rutgers, The State University of New Jersey, in a paper, "The Evolutionary Inheritance of Elemental Stoichiometry in Marine Phytoplankton" in the journal Nature, published Thursday (Sept. 18).

Studying ancient fossils plus current species of microscopic ocean plants called phytoplankton, the scientists found evidence that a "phytoplankton schism" took place after a global ocean oxygen depletion killed 85 percent of the organisms living in the ocean about 250 million years ago at the end of the Permian era. "This paved the way for the evolution of red phytoplankton," said one of the paper’s authors, Paul G. Falkowski, professor in the Environmental Biophysics and Molecular Ecology Program at Rutgers’ Institute of Marine and Coastal Sciences (IMCS). Falkowski has a joint appointment with Rutgers’ Department of Geological Sciences.



The Permian era, prior to the advent of the dinosaurs, ended in a global extinction scientists believe may have been linked to extraterrestrial collisions or earthly eruptions or explosions.

"Plants on land are green, and they inherited the cell components that gave them a green color about 400 million years ago," Falkowski said. "But most of plants or phytoplankton in the ocean are red - they inherited their pigments about 250 million years ago. Our paper suggests that a global ocean oxygen depletion changed the chemistry of the ocean and selected for red phytoplankton. The ocean has been dominated by the red line ever since."


The research is supported under the National Science Foundation’s Biocomplexity Program. Lead author on the paper is Antonietta Quigg, formerly of IMCS and now at Texas A&M University. Besides Falkowski, co-authors include Zoe V. Finkel and Andrew J. Irwin of IMCS, Yair Rosenthal of IMCS and the Department of Geological Sciences, Oscar Schofield of IMCS and Rutgers’ Coastal Ocean Observation Laboratory and John R. Reinfelder of Rutgers’ Department of Environmental Sciences. Co-authors from Princeton University Department of Geosciences are Tung-Yuan Ho and Francois M.M. Morel.

Bill Haduch | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>