Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicken embryo research tunes into inner ear

03.09.2003


Purdue University biologists have learned how to control the development of stem cells in the inner ears of embryonic chickens, a discovery which could potentially improve the ability to treat human diseases that cause deafness and vertigo.


Figure 1 shows part of the cochlea in an embryonic chicken’s inner ear, where patches of vestibular hairs, used to detect balance, grew in place of those that detect sound waves. The arrow indicates one such patch. Figure 2 is a close-up that shows both types of inner-ear hairs, which grow in tufts in different locations. The inset shows the type that detects bodily motion, with the hairs themselves stained red and the telltale cilia that extend from motion-detecting tufts stained green.



By introducing new genes into the cell nuclei, researchers instructed the embryonic cells to develop into different adult cells than they would have ordinarily. Instead of forming the tiny hairs that the inner ear uses to detect sound waves, the stem cells matured into tissue with different kind of hairs – the sort used to keep balance. This ability to guide the choice of cell types could expand researchers’ knowledge of the inner ear and its disorders.

"We’ve essentially switched the fate of these cells," said Donna Fekete (pronounced FEH-ka-tee), associate professor of biology in Purdue’s School of Science. "We now know at least one gene that determines what these embryonic ear cells will eventually become. As a result, we can control the outcome ourselves using gene transduction. Because so many people suffer from deafness later in life, we hope this research will yield treatments for them down the line."


The research appears in the current (9/1) issue of Developmental Biology.

Fekete’s group stumbled onto these results after setting out to determine the function of a family of genes found in many embryonic cells. These genes, called "Wnt" genes, influence the development of organs from the brain to muscles, but they also seemed connected in some unknown capacity to the ear. Some evidence that pointed in this direction came from Fekete’s collaborators in England, who work in the lab of Julian Lewis.

"We knew the Wnt genes were present in the ears of embryonic chicks," Fekete said. "We thought that altering the genes would perturb ear development in some way, and from a pure research perspective we wanted to know what that perturbation was. So, just to see what would happen, we used a modified retrovirus to deliver a souped-up version of a gene to make more cells experience the Wnt signal."

Retroviruses are the Trojan horses of the gene therapy world – the infectious genetic material within their shells can be replaced with genes of the researcher’s choosing, which the retrovirus then delivers to the nucleus of the target cell. The technique, when used on the chick cells, caused them to develop into otherwise healthy tissue that ordinarily appeared in different places in the inner ear.

"The inner ear uses two kinds of tiny hairs to sense sound and bodily motion," Fekete said. "These hairs are microscopic, and they are very different than the hairs you have on your head. The two kinds of inner ear hairs are different in one obvious respect – both types grow in tufts, but those tufts used for balance also have single, long cilia that stretch out from among the hairs. After we turned the Wnt genes on, we saw these cilia growing in places usually reserved for the non-ciliated auditory hairs."

Many researchers overseas are trying to make stem cells develop into different types of adult cells in order to cure diseases, and Fekete said she believes this is the kind of information they will eventually need to help humans.

"More than half of the U.S. population over the age of 60 has some sort of hearing loss," she said. "These cases are often caused by degeneration of inner ear cells damaged over the long term. Many young people also lose their hearing from sudden acoustic trauma. If we are to replace the damaged cells, we will presumably need to know how to grow the right cell type."

Another problem this research could address is the set of disorders that cause vertigo, which includes Meniere’s disease. This disorder, which strikes approximately one person out of 2,000 annually, causes bouts of severe disequilibrium and tinnitus and lasts for life.

"An added benefit of this discovery is that it not only switches the type of surface cells responsible for hairs, it switches the type of supporting cells as well. In other words, we can make entire sections of the inner ear grow one way or the other, which might permit doctors more options."

It will, however, be many years before such therapies might be ready for human testing.

"There’s still a great deal of work to be done here," Fekete said. "We still are not sure what happens when you completely deactivate the Wnt signal, for example, and that’s where our research is headed next. In any case, a cure for deafness based on this discovery won’t be appearing in your drugstore anytime soon."

Fekete did say, however, that the research was yet another example of the potential of stem cell research.

"Even if we cannot do research on human stem cells, those taken from animals can still contribute to our understanding of how living things develop," she said. "It’s work that needs to continue."

This research was supported in part by the National Institutes of Health.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Donna Fekete, (765) 496-3058, dfekete@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030902.Fekete.ear.html
http://www.indygov.org/mayor/cilsi/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>