Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chicken embryo research tunes into inner ear

03.09.2003


Purdue University biologists have learned how to control the development of stem cells in the inner ears of embryonic chickens, a discovery which could potentially improve the ability to treat human diseases that cause deafness and vertigo.


Figure 1 shows part of the cochlea in an embryonic chicken’s inner ear, where patches of vestibular hairs, used to detect balance, grew in place of those that detect sound waves. The arrow indicates one such patch. Figure 2 is a close-up that shows both types of inner-ear hairs, which grow in tufts in different locations. The inset shows the type that detects bodily motion, with the hairs themselves stained red and the telltale cilia that extend from motion-detecting tufts stained green.



By introducing new genes into the cell nuclei, researchers instructed the embryonic cells to develop into different adult cells than they would have ordinarily. Instead of forming the tiny hairs that the inner ear uses to detect sound waves, the stem cells matured into tissue with different kind of hairs – the sort used to keep balance. This ability to guide the choice of cell types could expand researchers’ knowledge of the inner ear and its disorders.

"We’ve essentially switched the fate of these cells," said Donna Fekete (pronounced FEH-ka-tee), associate professor of biology in Purdue’s School of Science. "We now know at least one gene that determines what these embryonic ear cells will eventually become. As a result, we can control the outcome ourselves using gene transduction. Because so many people suffer from deafness later in life, we hope this research will yield treatments for them down the line."


The research appears in the current (9/1) issue of Developmental Biology.

Fekete’s group stumbled onto these results after setting out to determine the function of a family of genes found in many embryonic cells. These genes, called "Wnt" genes, influence the development of organs from the brain to muscles, but they also seemed connected in some unknown capacity to the ear. Some evidence that pointed in this direction came from Fekete’s collaborators in England, who work in the lab of Julian Lewis.

"We knew the Wnt genes were present in the ears of embryonic chicks," Fekete said. "We thought that altering the genes would perturb ear development in some way, and from a pure research perspective we wanted to know what that perturbation was. So, just to see what would happen, we used a modified retrovirus to deliver a souped-up version of a gene to make more cells experience the Wnt signal."

Retroviruses are the Trojan horses of the gene therapy world – the infectious genetic material within their shells can be replaced with genes of the researcher’s choosing, which the retrovirus then delivers to the nucleus of the target cell. The technique, when used on the chick cells, caused them to develop into otherwise healthy tissue that ordinarily appeared in different places in the inner ear.

"The inner ear uses two kinds of tiny hairs to sense sound and bodily motion," Fekete said. "These hairs are microscopic, and they are very different than the hairs you have on your head. The two kinds of inner ear hairs are different in one obvious respect – both types grow in tufts, but those tufts used for balance also have single, long cilia that stretch out from among the hairs. After we turned the Wnt genes on, we saw these cilia growing in places usually reserved for the non-ciliated auditory hairs."

Many researchers overseas are trying to make stem cells develop into different types of adult cells in order to cure diseases, and Fekete said she believes this is the kind of information they will eventually need to help humans.

"More than half of the U.S. population over the age of 60 has some sort of hearing loss," she said. "These cases are often caused by degeneration of inner ear cells damaged over the long term. Many young people also lose their hearing from sudden acoustic trauma. If we are to replace the damaged cells, we will presumably need to know how to grow the right cell type."

Another problem this research could address is the set of disorders that cause vertigo, which includes Meniere’s disease. This disorder, which strikes approximately one person out of 2,000 annually, causes bouts of severe disequilibrium and tinnitus and lasts for life.

"An added benefit of this discovery is that it not only switches the type of surface cells responsible for hairs, it switches the type of supporting cells as well. In other words, we can make entire sections of the inner ear grow one way or the other, which might permit doctors more options."

It will, however, be many years before such therapies might be ready for human testing.

"There’s still a great deal of work to be done here," Fekete said. "We still are not sure what happens when you completely deactivate the Wnt signal, for example, and that’s where our research is headed next. In any case, a cure for deafness based on this discovery won’t be appearing in your drugstore anytime soon."

Fekete did say, however, that the research was yet another example of the potential of stem cell research.

"Even if we cannot do research on human stem cells, those taken from animals can still contribute to our understanding of how living things develop," she said. "It’s work that needs to continue."

This research was supported in part by the National Institutes of Health.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Donna Fekete, (765) 496-3058, dfekete@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030902.Fekete.ear.html
http://www.indygov.org/mayor/cilsi/

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>