Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting the molecules that pull cells apart

25.07.2003


Scientists at the MPI-CBG in Dresden and EMBL in Heidelberg map forces that help cells divide

"Cells obey the laws of physics and chemistry," begins a famous biology textbook, and one of the main goals of molecular biology is to link the properties of single molecules to the behavior of cells and the lives of organisms. So it is probably no surprise that an important new discovery about the physical forces that underlie cell division comes from a physics student-turned biologist, using math and a laser "scalpel" integrated into a microscope. The findings appear in the current issue of the journal Science.

Stephan Grill, Joe Howard, Erik Schäffer, Ernst Stelzer and Tony Hyman - in a collaboration between the Max-Planck Institute of Molecular Cell Biology and Genetics in Dresden and EMBL in Heidelberg - have done something few scientists have managed: they have counted the number of proteins that help an egg cell divide. This initial division happens in a special way in the roundworm C. elegans, one of biology´s most important model organisms.



"The fertilized egg splits into one large and one smaller cell," Grill says. "That difference in size is crucial to the development of the whole roundworm body. Normally people think of cells as dividing into two identical daughters; if they don´t, there must be forces at work that create an imbalance. We wanted to map them."

As a PhD student at EMBL, working between the research groups of Tony Hyman and biophysicist/microscopist Ernst Stelzer, Grill pursued an intriguing lead. A cable-like network of proteins called microtubules tows freshly-copied DNA off to opposing sides of the cell. The identical sets of genetic material are then sealed off in their own cells. Normally the anchors that the tow-lines are attached to, called centrosomes, remain near the center of the cell. But in the roundworm egg, one centrosome wanders off towards the outer rim of the cell. Either it was being pulled there or pushed there, Grill reasoned, so he began zapping parts of the cell with a laser, trying to disrupt the mechanism.

Grill followed Hyman – and the laser microscope – to Dresden, maintaining the collaboration with Stelzer. In the latest round of experiments, he used the laser to punch a hole in the core of the centrosome. As the structure disintegrated, he tracked what happened to the fragments. By measuring the rate at which they drifted apart, he could put exact numbers on the forces pulling them.
"The `force-generators´ are molecules called motors; their job is to pull cargoes down microtubules," Grill says. "Here they pull on the centrosome to position it. We thought that there might be more motors on one side, or stronger motors, which would create a stronger pull. But we couldn´t distinguish whether that was the case."."

At this point, Joe Howard came into play, Grill says. "He just looked at the data, and suggested that we should look at the variance in the speed of the fragments from experiment to experiment. This was possible because we had performed a large enough number of experiments for a thorough statistical analysis." The differences that they observed displayed an intriguing feature that the scientists could submit to a mathematical analysis. They learned that there are more motors pulling on the posterior centrosome: about 25, compared to roughly 15 on the other side. Even though a small number of motors are involved, it is sufficient to to pull the centrosome off-center. This has dramatic consequences – it permits the proper development of the body of the embryo.

The measurements will now permit Grill and his colleagues to understand how other molecules change cellular forces and influence cell division. They have already shown that a signal passed along by the protein G-alpha is necessary to activate motors and pull the centrosome off-center.

"Cell division is a very complex process, whether the result is identical daughters or asymmetric ones," Grill says. "Having precise numbers will let us fine-tune the mathematical models and use them to look for molecules that help orchestrate this process in many other types of cells."

Russ Hodge | EurekAlert!

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>