Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting the molecules that pull cells apart

25.07.2003


Scientists at the MPI-CBG in Dresden and EMBL in Heidelberg map forces that help cells divide

"Cells obey the laws of physics and chemistry," begins a famous biology textbook, and one of the main goals of molecular biology is to link the properties of single molecules to the behavior of cells and the lives of organisms. So it is probably no surprise that an important new discovery about the physical forces that underlie cell division comes from a physics student-turned biologist, using math and a laser "scalpel" integrated into a microscope. The findings appear in the current issue of the journal Science.

Stephan Grill, Joe Howard, Erik Schäffer, Ernst Stelzer and Tony Hyman - in a collaboration between the Max-Planck Institute of Molecular Cell Biology and Genetics in Dresden and EMBL in Heidelberg - have done something few scientists have managed: they have counted the number of proteins that help an egg cell divide. This initial division happens in a special way in the roundworm C. elegans, one of biology´s most important model organisms.



"The fertilized egg splits into one large and one smaller cell," Grill says. "That difference in size is crucial to the development of the whole roundworm body. Normally people think of cells as dividing into two identical daughters; if they don´t, there must be forces at work that create an imbalance. We wanted to map them."

As a PhD student at EMBL, working between the research groups of Tony Hyman and biophysicist/microscopist Ernst Stelzer, Grill pursued an intriguing lead. A cable-like network of proteins called microtubules tows freshly-copied DNA off to opposing sides of the cell. The identical sets of genetic material are then sealed off in their own cells. Normally the anchors that the tow-lines are attached to, called centrosomes, remain near the center of the cell. But in the roundworm egg, one centrosome wanders off towards the outer rim of the cell. Either it was being pulled there or pushed there, Grill reasoned, so he began zapping parts of the cell with a laser, trying to disrupt the mechanism.

Grill followed Hyman – and the laser microscope – to Dresden, maintaining the collaboration with Stelzer. In the latest round of experiments, he used the laser to punch a hole in the core of the centrosome. As the structure disintegrated, he tracked what happened to the fragments. By measuring the rate at which they drifted apart, he could put exact numbers on the forces pulling them.
"The `force-generators´ are molecules called motors; their job is to pull cargoes down microtubules," Grill says. "Here they pull on the centrosome to position it. We thought that there might be more motors on one side, or stronger motors, which would create a stronger pull. But we couldn´t distinguish whether that was the case."."

At this point, Joe Howard came into play, Grill says. "He just looked at the data, and suggested that we should look at the variance in the speed of the fragments from experiment to experiment. This was possible because we had performed a large enough number of experiments for a thorough statistical analysis." The differences that they observed displayed an intriguing feature that the scientists could submit to a mathematical analysis. They learned that there are more motors pulling on the posterior centrosome: about 25, compared to roughly 15 on the other side. Even though a small number of motors are involved, it is sufficient to to pull the centrosome off-center. This has dramatic consequences – it permits the proper development of the body of the embryo.

The measurements will now permit Grill and his colleagues to understand how other molecules change cellular forces and influence cell division. They have already shown that a signal passed along by the protein G-alpha is necessary to activate motors and pull the centrosome off-center.

"Cell division is a very complex process, whether the result is identical daughters or asymmetric ones," Grill says. "Having precise numbers will let us fine-tune the mathematical models and use them to look for molecules that help orchestrate this process in many other types of cells."

Russ Hodge | EurekAlert!

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>