Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting the molecules that pull cells apart

25.07.2003


Scientists at the MPI-CBG in Dresden and EMBL in Heidelberg map forces that help cells divide

"Cells obey the laws of physics and chemistry," begins a famous biology textbook, and one of the main goals of molecular biology is to link the properties of single molecules to the behavior of cells and the lives of organisms. So it is probably no surprise that an important new discovery about the physical forces that underlie cell division comes from a physics student-turned biologist, using math and a laser "scalpel" integrated into a microscope. The findings appear in the current issue of the journal Science.

Stephan Grill, Joe Howard, Erik Schäffer, Ernst Stelzer and Tony Hyman - in a collaboration between the Max-Planck Institute of Molecular Cell Biology and Genetics in Dresden and EMBL in Heidelberg - have done something few scientists have managed: they have counted the number of proteins that help an egg cell divide. This initial division happens in a special way in the roundworm C. elegans, one of biology´s most important model organisms.



"The fertilized egg splits into one large and one smaller cell," Grill says. "That difference in size is crucial to the development of the whole roundworm body. Normally people think of cells as dividing into two identical daughters; if they don´t, there must be forces at work that create an imbalance. We wanted to map them."

As a PhD student at EMBL, working between the research groups of Tony Hyman and biophysicist/microscopist Ernst Stelzer, Grill pursued an intriguing lead. A cable-like network of proteins called microtubules tows freshly-copied DNA off to opposing sides of the cell. The identical sets of genetic material are then sealed off in their own cells. Normally the anchors that the tow-lines are attached to, called centrosomes, remain near the center of the cell. But in the roundworm egg, one centrosome wanders off towards the outer rim of the cell. Either it was being pulled there or pushed there, Grill reasoned, so he began zapping parts of the cell with a laser, trying to disrupt the mechanism.

Grill followed Hyman – and the laser microscope – to Dresden, maintaining the collaboration with Stelzer. In the latest round of experiments, he used the laser to punch a hole in the core of the centrosome. As the structure disintegrated, he tracked what happened to the fragments. By measuring the rate at which they drifted apart, he could put exact numbers on the forces pulling them.
"The `force-generators´ are molecules called motors; their job is to pull cargoes down microtubules," Grill says. "Here they pull on the centrosome to position it. We thought that there might be more motors on one side, or stronger motors, which would create a stronger pull. But we couldn´t distinguish whether that was the case."."

At this point, Joe Howard came into play, Grill says. "He just looked at the data, and suggested that we should look at the variance in the speed of the fragments from experiment to experiment. This was possible because we had performed a large enough number of experiments for a thorough statistical analysis." The differences that they observed displayed an intriguing feature that the scientists could submit to a mathematical analysis. They learned that there are more motors pulling on the posterior centrosome: about 25, compared to roughly 15 on the other side. Even though a small number of motors are involved, it is sufficient to to pull the centrosome off-center. This has dramatic consequences – it permits the proper development of the body of the embryo.

The measurements will now permit Grill and his colleagues to understand how other molecules change cellular forces and influence cell division. They have already shown that a signal passed along by the protein G-alpha is necessary to activate motors and pull the centrosome off-center.

"Cell division is a very complex process, whether the result is identical daughters or asymmetric ones," Grill says. "Having precise numbers will let us fine-tune the mathematical models and use them to look for molecules that help orchestrate this process in many other types of cells."

Russ Hodge | EurekAlert!

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>