Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specific gene mutations responsible for congenital heart defects

07.07.2003


Researchers at UT Southwestern Medical Center at Dallas have discovered a gene critical to the development of the human heart and that mutations in the gene lead to congenital heart defects – the leading noninfectious cause of death in newborns.



GATA4 is only the second gene to have been identified as a cause of isolated congenital heart disease not associated with medically identified syndromes.

The findings will be published in a future edition of the journal Nature and appear online today.


The researchers identified mutations in the gene GATA4 as a cause of human cardiac septal defects, which occur when the walls separating the heart’s four chambers do not form properly.

"In terms of identifying genetic etiologies, there are not many discoveries that have been made," said Dr. Vidu Garg, assistant professor of pediatrics and one of the study’s lead authors. "This is one of the genes responsible, and we are working to identify others."

This discovery could one day help doctors prevent congenital heart defects – the most common developmental anomaly – by fixing the problem before a baby is born, said Dr. Deepak Srivastava, associate professor of pediatrics and molecular biology and the study’s senior author.

"We cannot change the fact that parents are going to pass along the mutation, but we might be able to develop a way to keep the disease from occurring," said Dr. Srivastava.

In the Nature study, researchers from UT Southwestern and three Japanese medical institutions examined two large families: one in Dallas that spanned five generations and included 16 members suffering from congenital heart defects, and a family from Tokyo spanning four generations and with eight members with congenital heart defects.

UT Southwestern researchers and Dr. Rumiko Matsuoka, a pediatric cardiologist from Japan, gathered data from the families’ medical history. Researchers also conducted physical examinations, electrocardiograms and cardiac ultrasounds. Genomic DNA from white blood cells was used for analysis, and researchers studied medical records of family members who had died.

Researchers performed a genetic linkage analysis. The analysis helps researchers find the responsible genes by comparing the genetic codes of patients suffering from heart defects with the codes of those who did not.

GATA4 mutations showed up in all family members with heart disease but not in the family members without heart disease or in 3,000 unrelated individuals.

The gene may be responsible for the defects through its interaction with TBX5, a protein that causes a subset of syndromic cardiac septal defects. Irfan Kathiriya, a student in UT Southwestern’s Medical Scientist Training Program and co-lead author, found that when a single amino of GATA4 was altered in the Dallas family, it prevented GATA4 from associating with TBX5, suggesting that the two work together to divide the heart into four chambers.

Dr. Srivastava said the next step is to determine how common GATA4 mutations are in the general population of children with heart defects and use that information to devise clever approaches to prevention. Eventually, broad screenings of individuals with congenital heart defects may help prepare them for the possibility of having a child with congenital heart defects, Dr. Garg said. The risk of that happening if either parent has a GATA4 mutation is 50 percent. In general, the risk of having a child with congenital heart disease is about 1 percent and jumps to 5 percent for parents who already have a baby with congenital heart disease.

Other UT Southwestern researchers who worked on the study were Dr. Jonathan Cohen, associate professor of internal medicine; Robert Barnes, a programmer analyst in the Eugene McDermott Center for Human Growth and Development; Marie Schluterman, a research technician in pediatrics; Dr. Isabelle King, a fellow in pediatrics; Caryn Rothrock, a biochemistry student research assistant; and Dr. Reenu Eapen, assistant professor of pediatrics. Cheryl Butler, a registered nurse at Children’s Medical Center of Dallas, also worked on the study.

Researchers from the Tokyo Women’s Medical University, the Heart Institute of Japan and Kyusyu Kosei-Nenkin Hospital in Fukuoka also took part in the study.

The study was funded by the National Institute of Child Health and Human Development; the National Heart, Lung and Blood Institute; the March of Dimes Birth Defects Foundation; Smile Train Inc.; and the Grant for the Promotion of the Advancement of Education and Research in Graduate Schools in Japan.

Staishy Bostick Siem | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>