Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk Scientists Identify Pathway That Determines When Plants Flower

02.07.2003


Salk scientists have defined a new pathway that controls how plants flower in response to shaded, crowded conditions, and their findings may have implications for increasing yield in crops ranging from rice to wheat.


Joanne Chory



The study, published in the June 19 issue of Nature, was led by Salk professor and Howard Hughes Medical Institute Investigator Joanne Chory and Salk/Howard Hughes Medical Institute postdoctoral fellow Pablo Cerdán. "The mechanism that leads to plants flowering early in response to shaded conditions has largely been unknown," said Chory. "And this is a major problem for crops, which are planted at high density and often shade each other in the field. By understanding this process, we may someday be able to control plant flowering responses to shade and, in turn, increase the yield of crops."

The Salk researchers focused on what is known in plants as the "shade-avoidance syndrome." When plants grow in high density, they perceive a decrease in the relative amounts of incoming red light to light of other wavelengths. This change of light serves as a warning for competition, prodding the plants to flower and create seeds. The byproduct of this process is that plant stems grow longer and leaf volume declines, leading to decreases in biomass and yield.


To understand the biology behind this process, the Salk scientists looked at a group of phytochromes, photoreceptors in plants that trigger the "shade-avoidance response." Using the common mustard seed plant Arabidopsis-the first plant to have its entire genome sequenced by a multinational consortium that involved Salk professor Joe Ecker and other researchers-Chory and Cerdán identified the specific protein that triggers flowering in response to suboptimal light conditions.

"We screened for mutant versions of Arabidopsis to identify the protein and the signaling pathway that leads to flowering in shade conditions," said Cerdán. "We discovered that the protein, called PFT1, acts downstream from a specific phytochrome, phyB, to begin this process."

Phytochromes have been studied by plant biologists for 50 years, and yet the complex pathways that lead to flowering are still not fully understood. "Even though the pathways that induce flowering are some of the best studied in plants, there still are a lot of new players to be identified," said Chory.

The researchers are encouraged by the implications of their initial findings. "In agriculture, it’s all about yield," said Chory. "Flowering time pathways in Arabidopsis have a great degree of similarity to rice, and we hope that this research will ultimately have applications for improving the yield of rice and other crops.

"There are more than 800 million people in the world who are chronically malnourished, and discovering new methods to increase crop yield is crucial to addressing world hunger," she said.

The study was funded by a grant from the National Institutes of Health and the Howard Hughes Medical Institute.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | Salk Institute
Further information:
http://www.salk.edu/news/releases/details.php?id=71

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>