Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk Scientists Identify Pathway That Determines When Plants Flower

02.07.2003


Salk scientists have defined a new pathway that controls how plants flower in response to shaded, crowded conditions, and their findings may have implications for increasing yield in crops ranging from rice to wheat.


Joanne Chory



The study, published in the June 19 issue of Nature, was led by Salk professor and Howard Hughes Medical Institute Investigator Joanne Chory and Salk/Howard Hughes Medical Institute postdoctoral fellow Pablo Cerdán. "The mechanism that leads to plants flowering early in response to shaded conditions has largely been unknown," said Chory. "And this is a major problem for crops, which are planted at high density and often shade each other in the field. By understanding this process, we may someday be able to control plant flowering responses to shade and, in turn, increase the yield of crops."

The Salk researchers focused on what is known in plants as the "shade-avoidance syndrome." When plants grow in high density, they perceive a decrease in the relative amounts of incoming red light to light of other wavelengths. This change of light serves as a warning for competition, prodding the plants to flower and create seeds. The byproduct of this process is that plant stems grow longer and leaf volume declines, leading to decreases in biomass and yield.


To understand the biology behind this process, the Salk scientists looked at a group of phytochromes, photoreceptors in plants that trigger the "shade-avoidance response." Using the common mustard seed plant Arabidopsis-the first plant to have its entire genome sequenced by a multinational consortium that involved Salk professor Joe Ecker and other researchers-Chory and Cerdán identified the specific protein that triggers flowering in response to suboptimal light conditions.

"We screened for mutant versions of Arabidopsis to identify the protein and the signaling pathway that leads to flowering in shade conditions," said Cerdán. "We discovered that the protein, called PFT1, acts downstream from a specific phytochrome, phyB, to begin this process."

Phytochromes have been studied by plant biologists for 50 years, and yet the complex pathways that lead to flowering are still not fully understood. "Even though the pathways that induce flowering are some of the best studied in plants, there still are a lot of new players to be identified," said Chory.

The researchers are encouraged by the implications of their initial findings. "In agriculture, it’s all about yield," said Chory. "Flowering time pathways in Arabidopsis have a great degree of similarity to rice, and we hope that this research will ultimately have applications for improving the yield of rice and other crops.

"There are more than 800 million people in the world who are chronically malnourished, and discovering new methods to increase crop yield is crucial to addressing world hunger," she said.

The study was funded by a grant from the National Institutes of Health and the Howard Hughes Medical Institute.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | Salk Institute
Further information:
http://www.salk.edu/news/releases/details.php?id=71

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>