Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk Scientists Identify Pathway That Determines When Plants Flower

02.07.2003


Salk scientists have defined a new pathway that controls how plants flower in response to shaded, crowded conditions, and their findings may have implications for increasing yield in crops ranging from rice to wheat.


Joanne Chory



The study, published in the June 19 issue of Nature, was led by Salk professor and Howard Hughes Medical Institute Investigator Joanne Chory and Salk/Howard Hughes Medical Institute postdoctoral fellow Pablo Cerdán. "The mechanism that leads to plants flowering early in response to shaded conditions has largely been unknown," said Chory. "And this is a major problem for crops, which are planted at high density and often shade each other in the field. By understanding this process, we may someday be able to control plant flowering responses to shade and, in turn, increase the yield of crops."

The Salk researchers focused on what is known in plants as the "shade-avoidance syndrome." When plants grow in high density, they perceive a decrease in the relative amounts of incoming red light to light of other wavelengths. This change of light serves as a warning for competition, prodding the plants to flower and create seeds. The byproduct of this process is that plant stems grow longer and leaf volume declines, leading to decreases in biomass and yield.


To understand the biology behind this process, the Salk scientists looked at a group of phytochromes, photoreceptors in plants that trigger the "shade-avoidance response." Using the common mustard seed plant Arabidopsis-the first plant to have its entire genome sequenced by a multinational consortium that involved Salk professor Joe Ecker and other researchers-Chory and Cerdán identified the specific protein that triggers flowering in response to suboptimal light conditions.

"We screened for mutant versions of Arabidopsis to identify the protein and the signaling pathway that leads to flowering in shade conditions," said Cerdán. "We discovered that the protein, called PFT1, acts downstream from a specific phytochrome, phyB, to begin this process."

Phytochromes have been studied by plant biologists for 50 years, and yet the complex pathways that lead to flowering are still not fully understood. "Even though the pathways that induce flowering are some of the best studied in plants, there still are a lot of new players to be identified," said Chory.

The researchers are encouraged by the implications of their initial findings. "In agriculture, it’s all about yield," said Chory. "Flowering time pathways in Arabidopsis have a great degree of similarity to rice, and we hope that this research will ultimately have applications for improving the yield of rice and other crops.

"There are more than 800 million people in the world who are chronically malnourished, and discovering new methods to increase crop yield is crucial to addressing world hunger," she said.

The study was funded by a grant from the National Institutes of Health and the Howard Hughes Medical Institute.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | Salk Institute
Further information:
http://www.salk.edu/news/releases/details.php?id=71

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>