Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting closer

01.07.2003


USC researchers have moved one step closer to understanding how the body fights harmful antigens – foreign molecules that trigger an immune response.

The team successfully simulated a mutation process that diversifies the proteins, or antibodies, responsible for immunity – a phenomenon known as somatic hypermutation. This process enables the body to fight off a wide range of diseases.

Their findings are detailed in the July 3 issue of the journal Nature.



"When performing laboratory – or in vitro experiments – you always hope to get results that are close to the real thing," said John Petruska, one of the paper’s authors and a professor of molecular biology in USC’s College of Letters, Arts & Sciences. "In this case, it is fascinating to discover that the somatic hypermutation process in vitro is nearly identical to that in a natural environment."

"This is the first step in building an in vitro system that would completely mimic the body’s immune response," Petruska added.

One of the first tactics the immune system uses to fight off foreign molecules is the production of protective antibody proteins, which are unique in their unlimited ability to diversify.

As one’s immune response intensifies, antibodies undergo mutations that enable them to attack foreign molecules more forcefully, said Phuong Pham, the paper’s lead author and a USC molecular biology postdoctoral researcher.

That process is known as somatic hypermutation.

Those more powerful antibodies allow the immune system to respond quickly and effectively to pathogens, particularly those from previous infections. In other words, the antibodies are much like soldiers sent to fight an enemy they’ve encountered in the past.

People whose immune systems lack the ability to create these strengthened antibodies may suffer from recurring bacterial and viral infections and do not respond to vaccinations.

Somatic hypermutation requires an enzyme called AID (Activation-Induced Cytidine Deaminase) which works on single-stranded DNA – a discovery made by the USC team earlier this year.

By allowing AID to work on single-stranded viral DNA containing a mutational marker gene, the researchers (using specialized laboratory techniques) were able to identify which DNAs contained mutations and which did not.

"The action of AID yielded the same specific mutational hot and cold spots along DNA strands that are observed in human antibody proteins," explained Myron F. Goodman, a professor of molecular biology and chemistry in USC’s College of Letters, Arts & Sciences and senior author of the Nature paper.

Those "hot" spots, identified by specific DNA sequences, allowed the researchers to clearly see where the mutations took place. In fact, the experiment yielded 14 out of 15 hot spots with perfect DNA sequences, demonstrating that the mutation process had gone off without a glitch.

"Remarkably, the results showed that AID acting alone on single-stranded DNA simulated the highly complex somatic hypermutation process that occurs in humans," Goodman said.

Furthermore, the team’s data revealed that the AID enzyme works its way along individual DNA strands, as opposed to jumping from one strand to another.

Because many of the DNA strands remained untouched as part of this methodical process, the team found that 98 percent of its experimental DNA had no mutations.

Among the 2 percent that did, half exhibited between one and 20 mutations, while the other half showed up to 80.

"It confirms that AID is working on individual pieces of DNA, instead of jumping around," Goodman said.

Overall, the USC team of researchers was impressed by AID’s role in the entire process.

"AID can’t account for somatic hypermutation by itself because we know that other enzymes are involved," Goodman explained. "But it’s pretty darn impressive to see that AID accounts for almost everything in the mutational targeting process."

The team’s work is yet another feat in the quest to uncover how the body’s immune system fights an enormous array of antigens, employing a delicate balance of mutations.

"Mutations can be both helpful and harmful," Petruska said. "Balance is key."

Gia Scafidi | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>