Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting closer

01.07.2003


USC researchers have moved one step closer to understanding how the body fights harmful antigens – foreign molecules that trigger an immune response.

The team successfully simulated a mutation process that diversifies the proteins, or antibodies, responsible for immunity – a phenomenon known as somatic hypermutation. This process enables the body to fight off a wide range of diseases.

Their findings are detailed in the July 3 issue of the journal Nature.



"When performing laboratory – or in vitro experiments – you always hope to get results that are close to the real thing," said John Petruska, one of the paper’s authors and a professor of molecular biology in USC’s College of Letters, Arts & Sciences. "In this case, it is fascinating to discover that the somatic hypermutation process in vitro is nearly identical to that in a natural environment."

"This is the first step in building an in vitro system that would completely mimic the body’s immune response," Petruska added.

One of the first tactics the immune system uses to fight off foreign molecules is the production of protective antibody proteins, which are unique in their unlimited ability to diversify.

As one’s immune response intensifies, antibodies undergo mutations that enable them to attack foreign molecules more forcefully, said Phuong Pham, the paper’s lead author and a USC molecular biology postdoctoral researcher.

That process is known as somatic hypermutation.

Those more powerful antibodies allow the immune system to respond quickly and effectively to pathogens, particularly those from previous infections. In other words, the antibodies are much like soldiers sent to fight an enemy they’ve encountered in the past.

People whose immune systems lack the ability to create these strengthened antibodies may suffer from recurring bacterial and viral infections and do not respond to vaccinations.

Somatic hypermutation requires an enzyme called AID (Activation-Induced Cytidine Deaminase) which works on single-stranded DNA – a discovery made by the USC team earlier this year.

By allowing AID to work on single-stranded viral DNA containing a mutational marker gene, the researchers (using specialized laboratory techniques) were able to identify which DNAs contained mutations and which did not.

"The action of AID yielded the same specific mutational hot and cold spots along DNA strands that are observed in human antibody proteins," explained Myron F. Goodman, a professor of molecular biology and chemistry in USC’s College of Letters, Arts & Sciences and senior author of the Nature paper.

Those "hot" spots, identified by specific DNA sequences, allowed the researchers to clearly see where the mutations took place. In fact, the experiment yielded 14 out of 15 hot spots with perfect DNA sequences, demonstrating that the mutation process had gone off without a glitch.

"Remarkably, the results showed that AID acting alone on single-stranded DNA simulated the highly complex somatic hypermutation process that occurs in humans," Goodman said.

Furthermore, the team’s data revealed that the AID enzyme works its way along individual DNA strands, as opposed to jumping from one strand to another.

Because many of the DNA strands remained untouched as part of this methodical process, the team found that 98 percent of its experimental DNA had no mutations.

Among the 2 percent that did, half exhibited between one and 20 mutations, while the other half showed up to 80.

"It confirms that AID is working on individual pieces of DNA, instead of jumping around," Goodman said.

Overall, the USC team of researchers was impressed by AID’s role in the entire process.

"AID can’t account for somatic hypermutation by itself because we know that other enzymes are involved," Goodman explained. "But it’s pretty darn impressive to see that AID accounts for almost everything in the mutational targeting process."

The team’s work is yet another feat in the quest to uncover how the body’s immune system fights an enormous array of antigens, employing a delicate balance of mutations.

"Mutations can be both helpful and harmful," Petruska said. "Balance is key."

Gia Scafidi | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>