Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholera protein structure – a target for vaccines & antibiotics – described by TSRI scientists

23.05.2003


A group of researchers from The Scripps Research Institute (TSRI) has solved structures of a bacterial protein called pilin, which is required for infection by pathogens that cause human diseases like meningitis, gonorrhea, diarrheal diseases, pneumonia, and cholera.

In the latest issue of the journal Molecular Cell, the TSRI group reports two key structures of these pilins and discoveries about their assembly into fibrous "pili." Because a whole class of bacterial pathogens require the assembly of pilin into the hair-like pilus filaments on their surface in order for them to move around, attach to, and infect host cells, the authors believe that this research provides essential knowledge to help scientists develop novel antibiotics and vaccines against these deadly and emerging bacterial diseases.

This work directly focuses on two such pathogens--Pseudomonas aeruginosa, which causes severe lung infections in cystic fibrosis patients, AIDS patients, and other immunocompromised individuals, and Vibrio cholerae, which causes cholera, a potentially fatal diarrheal disease that primarily afflicts people in developing countries.



"Cholera," says TSRI Professor John Tainer, Ph.D., "is a disease that could use better vaccines."

Tainer, who is an investigator in TSRI’s Department of Molecular Biology and a member of The Skaggs Institute for Chemical Biology at TSRI, determined the atomic structure of the pilus filaments with TSRI Senior Research Associate Lisa Craig, Ph.D., and three other key researchers--TSRI Professor Mark Yeager, computational expert and director of graphics development at TSRI Michael Pique, and Dartmouth Medical School Professor Ronald Taylor.

"If we can understand their atomic structure, we can go after developing vaccines that are highly specific," says Craig, who is first author on the paper.

The Structure and How It Was Solved

The pili are used by several types of bacteria to crawl around and stick to the intestine, lung, and other mucosal surfaces, and to pick up foreign genes and DNA, bringing them aboard to potentially increase the bacteria’s pathogenicity. In cholera, these pili are essential for the infection because they allow the bacteria to clump together and form a colony that protects them from the human immune response. This makes pili a good target for vaccine design, since blocking them should block the bacterium’s ability to cause infection.

However, solving the structure of these proteins has not been easy because of their size and shape. The pili themselves are assembled from thousands of copies of a single pilin subunit protein stacked together to resemble a microscopic thread--they are several hundred times longer than they are wide.

These structures are too large and flexible to be solved with the traditional techniques of structural biology used to study small proteins. So in the current study, the TSRI team was creative and combined more than one approach.

The group first solved the structure of the individual pilin proteins from the V. cholerae bacterium using x-ray crystallography--a technique where scientists first make crystals of molecules like proteins or DNA and then expose them to x-rays. The pattern of diffracted x-rays can then be collected and analyzed to determine the structure of the molecules in the crystal. Although a fragment of the V. cholerae pilin protein was missing in their structure, they were able to infer this structure by solving a full length structure of a pilin subunit from P. aeruginosa, which is important in infections of children with cystic fibrosis.

Craig, Yeager and Tainer then used a technique called electron microscopy to understand how the pilin proteins were organized in the pilus filaments. Electron microscopy uses a beam of electrons to magnify protein assemblies and other tiny structures up to one hundred thousand times onto a digital camera or a photographic plate.

The integration of x-ray crystallography and electron microscopy allowed Craig, Pique, and Tainer to build a model of the pili otherwise impossible at that level of molecular detail. The structures gave new insights into how the pili assemble and how they contribute to the pathogenesis of the bacteria--as well as providing a unique molecular map of these proteins that should aid in the design of new vaccines and therapeutics.

The research article, "Type IV Pilin Structure and Assembly: X-ray and EM Analyses of Vibrio cholerae Toxin Coregulated Pilus and Pseudomonas aeruginosa PAK Pilin" is authored by Lisa Craig, Ronald Taylor, Michael Pique, Brian Adair, Andrew Arvai, Mona Singh, Jane Lloyd, David Shin, Elizabeth Getzoff, Mark Yeager, Katrina Forest, and John Tainer and appears in the May 23, 2003 issue of the journal Molecular Cell.

The research was funded by the National Institutes of Health, The Skaggs Institute for Research, and the Canadian Institutes of Health Research.

More on Cholera: A Deadly Disease of Developing Nations

Although cholera was once common in this country, modern water treatment has virtually eliminated the disease domestically, though it is still a concern for U.S. world travelers. In the developing world and in areas with poor sewage treatment, cholera is still a major public health problem, and these areas frequently support outbreaks of disease. Cholera can be a deadly problem for children in third world countries. Epidemic outbreaks in the past have involved changes to the pilin protein, now structurally characterized by Scripps researchers.

Cholera is caused by an acute intestinal infection with the bacterium Vibrio cholerae. This usually occurs after someone has eaten food or drank water contaminated with the pathogen.

Cholera infections are sometimes mild, but result in watery diarrhea, vomiting, and severe fluid loss about five percent of the time. These cases are life-threatening and deadly where treatment through simple rehydration with a sugar and salt mixture is not available.

There is currently no effective vaccine available for this disease. According to the Centers for Disease Control and Prevention, the only cholera vaccine licensed in the United States has been discontinued because it offers only brief and incomplete immunity. For more information, please see:

Jason Bardi | EurekAlert!
Further information:
http://www.cdc.gov/ncidod/dbmd/diseaseinfo/cholera_g.htm.
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>