Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking how cells grow

24.04.2003


New research dismisses a widely held assumption about how cells grow



Research published today in Journal of Biology challenges an assumption about cell growth that underpins modern cellular biology. Ian Conlon and Martin Raff, of University College London, show that mammalian cells do not regulate their size in the way scientists have assumed they do since the 1970s.
Conlon and Raff conducted a series of experiments, using Schwann cells from the sciatic nerve of rats, to establish how mammalian cells control their size and ‘decide’ when to divide. This processes of cell size, growth and division has been widely studied in yeast for thirty years, and many aspects are the same in the two types of cell. Both yeast and mammalian cells are known to be able to maintain a constant average size as they grow and divide. It has therefore been assumed that the ‘checkpoints’ yeast cells use to ensure that they divide when they reach the correct size are mirrored by checkpoints in mammalian cells, but that assumption had not been tested experimentally - until now.

Using precise measurements, Conlon and Raff found key differences in the ways yeast and mammalian cells grow. Yeast cells grow exponentially, doubling in size over a fixed time period, but mammalian cells grow in a linear way, getting larger by the same amount each day; this means that the rate at which mammalian cells grow is the same regardless of the cell’s size, whereas in yeast big cells grow faster than small ones.



Previous research had shown that when moved to a nutrient-rich environment, yeast cells adjust quickly - within one cycle of growth and division. The average size of the cells increases when there are more nutrients available – so, yeast uses cell-size checkpoints to determine how large the cell should be before it divides.

It had been assumed that mammalian cells also use cell-size checkpoints. But Conlon and Raff found that when mammalian cells were moved to a nutrient-rich environment, it took approximately six divisions before cells grew to the average size they expected. This led them to conclude that mammalian cells do not use checkpoints based on their size to determine when to divide. Instead, Conlon and Raff suggest that mammalian cells ‘talk’ to each other, using extracellular signalling, to determine how large they should grow and when they should divide. “Animal cells hardly do anything without signals from other cells” says Raff.

The new research makes clear that there are important differences between the way yeast and mammalian cells coordinate cell growth and size. These differences make sense biologically. Yeast is a single-celled organism - cells are independent of each other and can grow and divide as fast as the nutrients in their environment can support. Animal cells are part of a larger organism, so their growth affects the good of the whole animal, and it makes good biological sense that this is controlled by signals from other cells.

Understanding cell growth and proliferation is of profound importance for biology and has implications for tackling disease, including cancer.

Grace Baynes | BioMed Central Limited
Further information:
http://jbiol.com/content/2/1/7

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>