Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking how cells grow

24.04.2003


New research dismisses a widely held assumption about how cells grow



Research published today in Journal of Biology challenges an assumption about cell growth that underpins modern cellular biology. Ian Conlon and Martin Raff, of University College London, show that mammalian cells do not regulate their size in the way scientists have assumed they do since the 1970s.
Conlon and Raff conducted a series of experiments, using Schwann cells from the sciatic nerve of rats, to establish how mammalian cells control their size and ‘decide’ when to divide. This processes of cell size, growth and division has been widely studied in yeast for thirty years, and many aspects are the same in the two types of cell. Both yeast and mammalian cells are known to be able to maintain a constant average size as they grow and divide. It has therefore been assumed that the ‘checkpoints’ yeast cells use to ensure that they divide when they reach the correct size are mirrored by checkpoints in mammalian cells, but that assumption had not been tested experimentally - until now.

Using precise measurements, Conlon and Raff found key differences in the ways yeast and mammalian cells grow. Yeast cells grow exponentially, doubling in size over a fixed time period, but mammalian cells grow in a linear way, getting larger by the same amount each day; this means that the rate at which mammalian cells grow is the same regardless of the cell’s size, whereas in yeast big cells grow faster than small ones.



Previous research had shown that when moved to a nutrient-rich environment, yeast cells adjust quickly - within one cycle of growth and division. The average size of the cells increases when there are more nutrients available – so, yeast uses cell-size checkpoints to determine how large the cell should be before it divides.

It had been assumed that mammalian cells also use cell-size checkpoints. But Conlon and Raff found that when mammalian cells were moved to a nutrient-rich environment, it took approximately six divisions before cells grew to the average size they expected. This led them to conclude that mammalian cells do not use checkpoints based on their size to determine when to divide. Instead, Conlon and Raff suggest that mammalian cells ‘talk’ to each other, using extracellular signalling, to determine how large they should grow and when they should divide. “Animal cells hardly do anything without signals from other cells” says Raff.

The new research makes clear that there are important differences between the way yeast and mammalian cells coordinate cell growth and size. These differences make sense biologically. Yeast is a single-celled organism - cells are independent of each other and can grow and divide as fast as the nutrients in their environment can support. Animal cells are part of a larger organism, so their growth affects the good of the whole animal, and it makes good biological sense that this is controlled by signals from other cells.

Understanding cell growth and proliferation is of profound importance for biology and has implications for tackling disease, including cancer.

Grace Baynes | BioMed Central Limited
Further information:
http://jbiol.com/content/2/1/7

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>