Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking how cells grow

24.04.2003


New research dismisses a widely held assumption about how cells grow



Research published today in Journal of Biology challenges an assumption about cell growth that underpins modern cellular biology. Ian Conlon and Martin Raff, of University College London, show that mammalian cells do not regulate their size in the way scientists have assumed they do since the 1970s.
Conlon and Raff conducted a series of experiments, using Schwann cells from the sciatic nerve of rats, to establish how mammalian cells control their size and ‘decide’ when to divide. This processes of cell size, growth and division has been widely studied in yeast for thirty years, and many aspects are the same in the two types of cell. Both yeast and mammalian cells are known to be able to maintain a constant average size as they grow and divide. It has therefore been assumed that the ‘checkpoints’ yeast cells use to ensure that they divide when they reach the correct size are mirrored by checkpoints in mammalian cells, but that assumption had not been tested experimentally - until now.

Using precise measurements, Conlon and Raff found key differences in the ways yeast and mammalian cells grow. Yeast cells grow exponentially, doubling in size over a fixed time period, but mammalian cells grow in a linear way, getting larger by the same amount each day; this means that the rate at which mammalian cells grow is the same regardless of the cell’s size, whereas in yeast big cells grow faster than small ones.



Previous research had shown that when moved to a nutrient-rich environment, yeast cells adjust quickly - within one cycle of growth and division. The average size of the cells increases when there are more nutrients available – so, yeast uses cell-size checkpoints to determine how large the cell should be before it divides.

It had been assumed that mammalian cells also use cell-size checkpoints. But Conlon and Raff found that when mammalian cells were moved to a nutrient-rich environment, it took approximately six divisions before cells grew to the average size they expected. This led them to conclude that mammalian cells do not use checkpoints based on their size to determine when to divide. Instead, Conlon and Raff suggest that mammalian cells ‘talk’ to each other, using extracellular signalling, to determine how large they should grow and when they should divide. “Animal cells hardly do anything without signals from other cells” says Raff.

The new research makes clear that there are important differences between the way yeast and mammalian cells coordinate cell growth and size. These differences make sense biologically. Yeast is a single-celled organism - cells are independent of each other and can grow and divide as fast as the nutrients in their environment can support. Animal cells are part of a larger organism, so their growth affects the good of the whole animal, and it makes good biological sense that this is controlled by signals from other cells.

Understanding cell growth and proliferation is of profound importance for biology and has implications for tackling disease, including cancer.

Grace Baynes | BioMed Central Limited
Further information:
http://jbiol.com/content/2/1/7

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>