Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checking how cells grow

24.04.2003


New research dismisses a widely held assumption about how cells grow



Research published today in Journal of Biology challenges an assumption about cell growth that underpins modern cellular biology. Ian Conlon and Martin Raff, of University College London, show that mammalian cells do not regulate their size in the way scientists have assumed they do since the 1970s.
Conlon and Raff conducted a series of experiments, using Schwann cells from the sciatic nerve of rats, to establish how mammalian cells control their size and ‘decide’ when to divide. This processes of cell size, growth and division has been widely studied in yeast for thirty years, and many aspects are the same in the two types of cell. Both yeast and mammalian cells are known to be able to maintain a constant average size as they grow and divide. It has therefore been assumed that the ‘checkpoints’ yeast cells use to ensure that they divide when they reach the correct size are mirrored by checkpoints in mammalian cells, but that assumption had not been tested experimentally - until now.

Using precise measurements, Conlon and Raff found key differences in the ways yeast and mammalian cells grow. Yeast cells grow exponentially, doubling in size over a fixed time period, but mammalian cells grow in a linear way, getting larger by the same amount each day; this means that the rate at which mammalian cells grow is the same regardless of the cell’s size, whereas in yeast big cells grow faster than small ones.



Previous research had shown that when moved to a nutrient-rich environment, yeast cells adjust quickly - within one cycle of growth and division. The average size of the cells increases when there are more nutrients available – so, yeast uses cell-size checkpoints to determine how large the cell should be before it divides.

It had been assumed that mammalian cells also use cell-size checkpoints. But Conlon and Raff found that when mammalian cells were moved to a nutrient-rich environment, it took approximately six divisions before cells grew to the average size they expected. This led them to conclude that mammalian cells do not use checkpoints based on their size to determine when to divide. Instead, Conlon and Raff suggest that mammalian cells ‘talk’ to each other, using extracellular signalling, to determine how large they should grow and when they should divide. “Animal cells hardly do anything without signals from other cells” says Raff.

The new research makes clear that there are important differences between the way yeast and mammalian cells coordinate cell growth and size. These differences make sense biologically. Yeast is a single-celled organism - cells are independent of each other and can grow and divide as fast as the nutrients in their environment can support. Animal cells are part of a larger organism, so their growth affects the good of the whole animal, and it makes good biological sense that this is controlled by signals from other cells.

Understanding cell growth and proliferation is of profound importance for biology and has implications for tackling disease, including cancer.

Grace Baynes | BioMed Central Limited
Further information:
http://jbiol.com/content/2/1/7

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>