Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloned Pigs Differ from Originals in Looks and Behavior

15.04.2003


Overhead comparison of cloned pigs shows hair growth pattern variation#
© NC State University


New research at North Carolina State University’s College of Veterinary Medicine indicates that cloned pigs can have the same degree of variability in physical appearance and behavior as normally bred animals. Two separate studies show that while clones are genetically identical to the original animal, the similarities end there.

This dispels the commonly held notion that cloned animals retain the physical and behavioral attributes of the animal from which they were cloned. The research was conducted by Dr. Jorge

Piedrahita, professor of molecular biomedical sciences at NC State, and colleagues at Texas A&M University. His study on cloned pig behavior, which appears in Applied Animal Behaviour Science, is the first published research on the behavior of cloned mammals. The study on cloned pig physiology, which appears in Biology of Reproduction, is the first study on clone physiology that included control subjects.



Piedrahita says the implications are far-reaching. “The technology of cloning has been sold to the public as a way of creating a group of identical animals and, as such, there are companies that have been set up around this concept, especially for pet cloning. The implication is that your cloned pet is going to behave and look like the one you already have – and that will not be the case,” he said.

“We demonstrated in our behavioral paper that the behavior of clones is not identical. They are not homogeneous, so you cannot expect your cloned pet to behave like your original pet, even discounting environment. We’ve cloned animals that were raised in the same environment and they still didn’t act the same,” Piedrahita said.
In the behavioral study, two litters of cloned female pigs, consisting of five and four pigs respectively, and two control litters – each with four purebred pigs – were used. The purebred control pigs were of the same breed and sex and were born within the same week as their matched cloned litter. The cloned pigs were compared with the purebreds on a number of criteria such as food preferences and temperament.

In the physical study, the pigs were compared using a series of physiological and genetic parameters. The results indicated that while cloning creates animals within the normal phenotype – the appearance of an organism with respect to a group of characters – it increases the variability associated with some traits. “That means that you can’t use cloned animals to reduce the size of groups involved in animal experiments,” Piedrahita said.

Piedrahita says scientists must be very careful with cloning, since genetic errors can be introduced into the DNA of the clone during the process.

“Cloning advocates are calling them normal, healthy clones, but we don’t think that is always the case. Some of those animals are going to be normal and very healthy but others will not. They are healthy enough to survive but that doesn’t make them as healthy as non-cloned animals. At this point, we just don’t have a lot of the answers,” he said.

“While clones are genetically identical, physical characteristics such as size, weight and hair type may not be the same because the DNA has been modified during the cloning process in such a way that it affects the activity of certain genes,” Piedrahita adds.

Piedrahita believes the behavioral and physiological variables will run throughout all cloned animals. “Any technology that’s being sold that utilizes the clone itself, not the offspring of the clone, is the one that you have to be very careful with. That includes applications such as pet cloning, and the reproduction of high-production dairy cows or thoroughbred racehorses,” he said.

Piedrahita says the benefits of cloning are better realized when the clone has offspring of its own. That’s because any genetic errors are corrected, meaning that the original animal and the offspring of the clone will have the same genetic merit.

Piedrahita cites bull breeding as an example. “Say you have a dairy bull of high genetic merit so that, when mated with any cow, the offspring of that cow produces more milk. Now, let’s say that bull produces very little sperm and has difficulty producing offspring. You could clone that animal, and then breed the clones. The offspring of the clones will have the same genetic merit as the original bull that allows cows to produce more milk.

“The bottom line is this: While clones are genetically identical, physical characteristics such as size, weight and hair type may not be the same because the DNA has been modified during the cloning process in such a way that it affects the activity of certain genes,” he said.

The research was supported by a grant from the National Institutes of Health.

Greg Thomas, | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_04/113.htm

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>