Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW researchers find second anthrax toxin receptor

08.04.2003


Building on their 2001 discovery of a cellular doorway used by anthrax toxin to enter cells, University of Wisconsin Medical School researchers have found a second anthrax toxin doorway, or receptor. The finding could offer new clues to preventing the toxin’s entrance into cells.

The researchers also have found that when they isolated a specific segment of the receptor in the laboratory, they could use it as a decoy to lure anthrax toxin away from the real cell receptors, preventing much of the toxin from entering cells and inflicting its usually fatal damage.

The findings will appear in this week’s (the week of April 7) online "Early Edition" of the Proceedings of the National Academy of Sciences (http://www.pnas.org).



The new details on the way anthrax toxin enters cells should provide pharmaceutical companies with important new ammunition to attack the grave problem of anthrax disease, says lead researcher John A. T. Young, the Howard M. Temin Professor of Cancer Research at the Medical School’s McArdle Laboratory for Cancer Research.

"This discovery gives scientists more tools to understand how the anthrax toxin works," says Young, adding that he and his team were very surprised to find the second receptor, since the prevailing theory had been that only one exists. Heather Scobie, G. Jonah Rainey and Kenneth Bradley were team members and co-authors on the paper.

The existence of two receptors makes it clear that the toxin’s entry into cells is much more complicated than previously thought, notes Young, an expert on receptor molecules.

Scientists do know that to prevent anthrax disease, antibiotics must be administered immediately to kill anthrax bacteria that typically enter the body as spores via the skin, lungs or gastrointestinal tract. Once activated, the spores become bacteria and soon release toxins consisting of three components.

One toxic component, protective antigen (PA), must attach, or bind, to a receptor before the rest of the toxin can enter cells. Once attached, PA transports the other components - edema factor and lethal factor - into the cells, where they produce effects that can lead quickly to devastating disease symptoms.

Following their 2001 discovery of anthrax toxin receptor (ATR), the UW researchers worked with a protein that has similar molecular features. They chose the protein - called human capillary morphogenesis protein 2, or CMG2 - because it contains an important segment that is somewhat similar to that found in ATR. The segment is the part of the molecule that attaches directly to PA.

"We thought we would use CMG2 as a starting point to make genetic changes to find which characteristics of ATR are important to receptor binding," says Young. "To our surprise, we found that CMG2 itself is an anthrax toxin receptor."

The occurrence of multiple receptors - on the same or different cells - is not uncommon, says Young, citing HIV as an example of a pathogen that employs two major co-receptors to enter cells.

The existence of the two anthrax toxin receptors should interest cancer researchers, as both receptors are turned on when new blood vessels are forming - a process called angiogenesis, Scobie says.

"This may explain anthrax toxin’s effectiveness in treating cancer, which has been shown in studies by other scientists," she adds. "The toxin may have prevented the development of tumor-promoting angiogenesis."

In their previous work, Young and his colleagues used a laboratory-made version of the specific ATR segment that attaches to anthrax toxin as a decoy, and found it to be successful in preventing the toxin from entering the cell. Performing the same exercise with CMG2, they found the new decoy even more effective at enticing the toxin away from the real receptor.

"The new decoy is remarkably potent," says Rainey. "With a ratio of three parts CMG2 decoy to one part toxin, we found that we could effectively neutralize the toxin. Much more of the ATR decoy was required to be effective."

Young said his team now is trying to understand why the new decoy works better.

"We are trying to further improve its function. Our hope is that an improved form of the decoy could be used therapeutically," he says.

The research is supported by a grant from the National Institute of Allergy and Infectious Diseases.


- Dian Land, (608) 263-9893, dj.land@hosp.wisc.edu


John Young | University of Wisconsin-Madison
Further information:
http://www.news.wisc.edu/releases/view.html?id=8477&month=Apr&year=2003

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>