Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW researchers find second anthrax toxin receptor

08.04.2003


Building on their 2001 discovery of a cellular doorway used by anthrax toxin to enter cells, University of Wisconsin Medical School researchers have found a second anthrax toxin doorway, or receptor. The finding could offer new clues to preventing the toxin’s entrance into cells.

The researchers also have found that when they isolated a specific segment of the receptor in the laboratory, they could use it as a decoy to lure anthrax toxin away from the real cell receptors, preventing much of the toxin from entering cells and inflicting its usually fatal damage.

The findings will appear in this week’s (the week of April 7) online "Early Edition" of the Proceedings of the National Academy of Sciences (http://www.pnas.org).



The new details on the way anthrax toxin enters cells should provide pharmaceutical companies with important new ammunition to attack the grave problem of anthrax disease, says lead researcher John A. T. Young, the Howard M. Temin Professor of Cancer Research at the Medical School’s McArdle Laboratory for Cancer Research.

"This discovery gives scientists more tools to understand how the anthrax toxin works," says Young, adding that he and his team were very surprised to find the second receptor, since the prevailing theory had been that only one exists. Heather Scobie, G. Jonah Rainey and Kenneth Bradley were team members and co-authors on the paper.

The existence of two receptors makes it clear that the toxin’s entry into cells is much more complicated than previously thought, notes Young, an expert on receptor molecules.

Scientists do know that to prevent anthrax disease, antibiotics must be administered immediately to kill anthrax bacteria that typically enter the body as spores via the skin, lungs or gastrointestinal tract. Once activated, the spores become bacteria and soon release toxins consisting of three components.

One toxic component, protective antigen (PA), must attach, or bind, to a receptor before the rest of the toxin can enter cells. Once attached, PA transports the other components - edema factor and lethal factor - into the cells, where they produce effects that can lead quickly to devastating disease symptoms.

Following their 2001 discovery of anthrax toxin receptor (ATR), the UW researchers worked with a protein that has similar molecular features. They chose the protein - called human capillary morphogenesis protein 2, or CMG2 - because it contains an important segment that is somewhat similar to that found in ATR. The segment is the part of the molecule that attaches directly to PA.

"We thought we would use CMG2 as a starting point to make genetic changes to find which characteristics of ATR are important to receptor binding," says Young. "To our surprise, we found that CMG2 itself is an anthrax toxin receptor."

The occurrence of multiple receptors - on the same or different cells - is not uncommon, says Young, citing HIV as an example of a pathogen that employs two major co-receptors to enter cells.

The existence of the two anthrax toxin receptors should interest cancer researchers, as both receptors are turned on when new blood vessels are forming - a process called angiogenesis, Scobie says.

"This may explain anthrax toxin’s effectiveness in treating cancer, which has been shown in studies by other scientists," she adds. "The toxin may have prevented the development of tumor-promoting angiogenesis."

In their previous work, Young and his colleagues used a laboratory-made version of the specific ATR segment that attaches to anthrax toxin as a decoy, and found it to be successful in preventing the toxin from entering the cell. Performing the same exercise with CMG2, they found the new decoy even more effective at enticing the toxin away from the real receptor.

"The new decoy is remarkably potent," says Rainey. "With a ratio of three parts CMG2 decoy to one part toxin, we found that we could effectively neutralize the toxin. Much more of the ATR decoy was required to be effective."

Young said his team now is trying to understand why the new decoy works better.

"We are trying to further improve its function. Our hope is that an improved form of the decoy could be used therapeutically," he says.

The research is supported by a grant from the National Institute of Allergy and Infectious Diseases.


- Dian Land, (608) 263-9893, dj.land@hosp.wisc.edu


John Young | University of Wisconsin-Madison
Further information:
http://www.news.wisc.edu/releases/view.html?id=8477&month=Apr&year=2003

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>