Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW researchers find second anthrax toxin receptor

08.04.2003


Building on their 2001 discovery of a cellular doorway used by anthrax toxin to enter cells, University of Wisconsin Medical School researchers have found a second anthrax toxin doorway, or receptor. The finding could offer new clues to preventing the toxin’s entrance into cells.

The researchers also have found that when they isolated a specific segment of the receptor in the laboratory, they could use it as a decoy to lure anthrax toxin away from the real cell receptors, preventing much of the toxin from entering cells and inflicting its usually fatal damage.

The findings will appear in this week’s (the week of April 7) online "Early Edition" of the Proceedings of the National Academy of Sciences (http://www.pnas.org).



The new details on the way anthrax toxin enters cells should provide pharmaceutical companies with important new ammunition to attack the grave problem of anthrax disease, says lead researcher John A. T. Young, the Howard M. Temin Professor of Cancer Research at the Medical School’s McArdle Laboratory for Cancer Research.

"This discovery gives scientists more tools to understand how the anthrax toxin works," says Young, adding that he and his team were very surprised to find the second receptor, since the prevailing theory had been that only one exists. Heather Scobie, G. Jonah Rainey and Kenneth Bradley were team members and co-authors on the paper.

The existence of two receptors makes it clear that the toxin’s entry into cells is much more complicated than previously thought, notes Young, an expert on receptor molecules.

Scientists do know that to prevent anthrax disease, antibiotics must be administered immediately to kill anthrax bacteria that typically enter the body as spores via the skin, lungs or gastrointestinal tract. Once activated, the spores become bacteria and soon release toxins consisting of three components.

One toxic component, protective antigen (PA), must attach, or bind, to a receptor before the rest of the toxin can enter cells. Once attached, PA transports the other components - edema factor and lethal factor - into the cells, where they produce effects that can lead quickly to devastating disease symptoms.

Following their 2001 discovery of anthrax toxin receptor (ATR), the UW researchers worked with a protein that has similar molecular features. They chose the protein - called human capillary morphogenesis protein 2, or CMG2 - because it contains an important segment that is somewhat similar to that found in ATR. The segment is the part of the molecule that attaches directly to PA.

"We thought we would use CMG2 as a starting point to make genetic changes to find which characteristics of ATR are important to receptor binding," says Young. "To our surprise, we found that CMG2 itself is an anthrax toxin receptor."

The occurrence of multiple receptors - on the same or different cells - is not uncommon, says Young, citing HIV as an example of a pathogen that employs two major co-receptors to enter cells.

The existence of the two anthrax toxin receptors should interest cancer researchers, as both receptors are turned on when new blood vessels are forming - a process called angiogenesis, Scobie says.

"This may explain anthrax toxin’s effectiveness in treating cancer, which has been shown in studies by other scientists," she adds. "The toxin may have prevented the development of tumor-promoting angiogenesis."

In their previous work, Young and his colleagues used a laboratory-made version of the specific ATR segment that attaches to anthrax toxin as a decoy, and found it to be successful in preventing the toxin from entering the cell. Performing the same exercise with CMG2, they found the new decoy even more effective at enticing the toxin away from the real receptor.

"The new decoy is remarkably potent," says Rainey. "With a ratio of three parts CMG2 decoy to one part toxin, we found that we could effectively neutralize the toxin. Much more of the ATR decoy was required to be effective."

Young said his team now is trying to understand why the new decoy works better.

"We are trying to further improve its function. Our hope is that an improved form of the decoy could be used therapeutically," he says.

The research is supported by a grant from the National Institute of Allergy and Infectious Diseases.


- Dian Land, (608) 263-9893, dj.land@hosp.wisc.edu


John Young | University of Wisconsin-Madison
Further information:
http://www.news.wisc.edu/releases/view.html?id=8477&month=Apr&year=2003

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>