Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UW researchers find second anthrax toxin receptor


Building on their 2001 discovery of a cellular doorway used by anthrax toxin to enter cells, University of Wisconsin Medical School researchers have found a second anthrax toxin doorway, or receptor. The finding could offer new clues to preventing the toxin’s entrance into cells.

The researchers also have found that when they isolated a specific segment of the receptor in the laboratory, they could use it as a decoy to lure anthrax toxin away from the real cell receptors, preventing much of the toxin from entering cells and inflicting its usually fatal damage.

The findings will appear in this week’s (the week of April 7) online "Early Edition" of the Proceedings of the National Academy of Sciences (

The new details on the way anthrax toxin enters cells should provide pharmaceutical companies with important new ammunition to attack the grave problem of anthrax disease, says lead researcher John A. T. Young, the Howard M. Temin Professor of Cancer Research at the Medical School’s McArdle Laboratory for Cancer Research.

"This discovery gives scientists more tools to understand how the anthrax toxin works," says Young, adding that he and his team were very surprised to find the second receptor, since the prevailing theory had been that only one exists. Heather Scobie, G. Jonah Rainey and Kenneth Bradley were team members and co-authors on the paper.

The existence of two receptors makes it clear that the toxin’s entry into cells is much more complicated than previously thought, notes Young, an expert on receptor molecules.

Scientists do know that to prevent anthrax disease, antibiotics must be administered immediately to kill anthrax bacteria that typically enter the body as spores via the skin, lungs or gastrointestinal tract. Once activated, the spores become bacteria and soon release toxins consisting of three components.

One toxic component, protective antigen (PA), must attach, or bind, to a receptor before the rest of the toxin can enter cells. Once attached, PA transports the other components - edema factor and lethal factor - into the cells, where they produce effects that can lead quickly to devastating disease symptoms.

Following their 2001 discovery of anthrax toxin receptor (ATR), the UW researchers worked with a protein that has similar molecular features. They chose the protein - called human capillary morphogenesis protein 2, or CMG2 - because it contains an important segment that is somewhat similar to that found in ATR. The segment is the part of the molecule that attaches directly to PA.

"We thought we would use CMG2 as a starting point to make genetic changes to find which characteristics of ATR are important to receptor binding," says Young. "To our surprise, we found that CMG2 itself is an anthrax toxin receptor."

The occurrence of multiple receptors - on the same or different cells - is not uncommon, says Young, citing HIV as an example of a pathogen that employs two major co-receptors to enter cells.

The existence of the two anthrax toxin receptors should interest cancer researchers, as both receptors are turned on when new blood vessels are forming - a process called angiogenesis, Scobie says.

"This may explain anthrax toxin’s effectiveness in treating cancer, which has been shown in studies by other scientists," she adds. "The toxin may have prevented the development of tumor-promoting angiogenesis."

In their previous work, Young and his colleagues used a laboratory-made version of the specific ATR segment that attaches to anthrax toxin as a decoy, and found it to be successful in preventing the toxin from entering the cell. Performing the same exercise with CMG2, they found the new decoy even more effective at enticing the toxin away from the real receptor.

"The new decoy is remarkably potent," says Rainey. "With a ratio of three parts CMG2 decoy to one part toxin, we found that we could effectively neutralize the toxin. Much more of the ATR decoy was required to be effective."

Young said his team now is trying to understand why the new decoy works better.

"We are trying to further improve its function. Our hope is that an improved form of the decoy could be used therapeutically," he says.

The research is supported by a grant from the National Institute of Allergy and Infectious Diseases.

- Dian Land, (608) 263-9893,

John Young | University of Wisconsin-Madison
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>