Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitchhiking bacteria could compromise the detection of life on Mars

04.04.2003



Is there life on Mars? It’s possible, but it may not be Martian, say scientists. New research, published in the open access journal BMC Microbiology, suggests that conditions on Mars are capable of supporting dormant bacteria, known as endospores. This raises concern about future attempts to detect Martian life forms because endospores originating on Earth could potentially hitch a ride to Mars and survive on its surface.
Soil on Mars is thought to be rich in oxidising chemicals that are known to destroy life. The high levels of ultraviolet radiation on the surface of the planet make it unlikely that any organism could survive. Ronald Crawford and colleagues from the University of Idaho have investigated whether bacterial endospores can exist in Mars’s hostile environment.

Endospores are a survival form of bacteria, formed when they find themselves in an unfavourable environment, and are perhaps the most resilient life form on Earth. They are resistant to extreme temperatures, most disinfectants, radiation, drying, and can survive for thousands of years in this dormant state. There is even evidence that they can survive in the vacuum of space. Given the possibility of endospores hitching a lift on spacecraft bound for Mars, Ronald Crawford and his colleagues investigated whether endospores could survive in a simulated Martian environment.


Martian soil was created by mixing dry sand containing endospores with ferrate. The soil was then left at –20 oC and exposed to high levels of UV light for six weeks. These conditions were designed to simulate the dry, cold, oxidizing environment found on Mars. Subsequent analysis of the soil showed that endospores were still alive below a depth of 5mm, suggesting that life is possible in these hostile conditions.

The authors speculate, “that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions.”

Although the researchers have not found direct evidence for life on Mars their research does throw up a potential problem with future space missions. The survival of endospores in such adverse conditions raises the possibility that bacterial endospores could travel to Mars on the surface of spacecraft and survive on Martian soil. This could seriously compromise future efforts to establish whether there is, or has been life on Mars, as it would be difficult for researchers to know whether any endospores found originated from Earth or Mars.

Whilst this work establishes that bacterial endospores can survive exposure to the conditions probably found on Mars, it should be noted that it was not possible to test whether their simulated Martian environment would kill endospores over a geological timescale.

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/content/pdf/1471-2180-3-4.pdf
http://www.biomedcentral.com/info/about/pr-releases?pr=20030403

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>