Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hitchhiking bacteria could compromise the detection of life on Mars

04.04.2003



Is there life on Mars? It’s possible, but it may not be Martian, say scientists. New research, published in the open access journal BMC Microbiology, suggests that conditions on Mars are capable of supporting dormant bacteria, known as endospores. This raises concern about future attempts to detect Martian life forms because endospores originating on Earth could potentially hitch a ride to Mars and survive on its surface.
Soil on Mars is thought to be rich in oxidising chemicals that are known to destroy life. The high levels of ultraviolet radiation on the surface of the planet make it unlikely that any organism could survive. Ronald Crawford and colleagues from the University of Idaho have investigated whether bacterial endospores can exist in Mars’s hostile environment.

Endospores are a survival form of bacteria, formed when they find themselves in an unfavourable environment, and are perhaps the most resilient life form on Earth. They are resistant to extreme temperatures, most disinfectants, radiation, drying, and can survive for thousands of years in this dormant state. There is even evidence that they can survive in the vacuum of space. Given the possibility of endospores hitching a lift on spacecraft bound for Mars, Ronald Crawford and his colleagues investigated whether endospores could survive in a simulated Martian environment.


Martian soil was created by mixing dry sand containing endospores with ferrate. The soil was then left at –20 oC and exposed to high levels of UV light for six weeks. These conditions were designed to simulate the dry, cold, oxidizing environment found on Mars. Subsequent analysis of the soil showed that endospores were still alive below a depth of 5mm, suggesting that life is possible in these hostile conditions.

The authors speculate, “that if entities resembling bacterial endospores were produced at some point by life forms on Mars, they might still be present and viable, given appropriate germination conditions.”

Although the researchers have not found direct evidence for life on Mars their research does throw up a potential problem with future space missions. The survival of endospores in such adverse conditions raises the possibility that bacterial endospores could travel to Mars on the surface of spacecraft and survive on Martian soil. This could seriously compromise future efforts to establish whether there is, or has been life on Mars, as it would be difficult for researchers to know whether any endospores found originated from Earth or Mars.

Whilst this work establishes that bacterial endospores can survive exposure to the conditions probably found on Mars, it should be noted that it was not possible to test whether their simulated Martian environment would kill endospores over a geological timescale.

Gordon Fletcher | BioMed Central Limited
Further information:
http://www.biomedcentral.com/content/pdf/1471-2180-3-4.pdf
http://www.biomedcentral.com/info/about/pr-releases?pr=20030403

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>