Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The hormone ethylene is necessary for plant resistance


Dutch phytopathologists have shown that ethylene is vital for the protection of plants against bacteria and fungi. This is another function for the plant hormone already known to play a role in plant aging and fruit ripening.

Bart Geraats from Utrecht University demonstrated that plants which are insensitive for the hormone ethylene are hypersensitive to various microorganisms. The research implies that farmers and horticulturalists must be careful with substances that inhibit the effect of ethylene. Such substances could increase the susceptibility of plants to pathogens.

The researchers produced modified tobacco plants which were insensitive to ethylene. These plants were spontaneously diseased and wilted when grown in ordinary compost. Various fungi and fungi-like microorganisms in the compost attacked the ethylene-insensitive tobacco. These microorganisms do not usually cause diseases in unmodified plants.

Furthermore, various tobacco pathogens caused considerably more damage in the modified than in the unmodified tobacco plants.

This showed that plants must be able to detect ethylene in order to protect themselves against infections caused by various microorganisms.

Efforts to make the ethylene-insensitive plants more resistant were not successful. The administration of chemical substances which normally activate disease resistance in plants provided no increased resistance to the microorganisms in the compost. Treating the roots with harmless or even ’healthy’ bacteria gave no protection either. These bacteria should have competed with the pathogenic microorganisms or could even have increased the disease resistance of the plants.

Ethylene therefore appears to play a key role in activating the resistance mechanism against infectious microorganisms.

For further information please contact Bart Geraats (Department of Phytopathology, Utrecht University), tel. +31 (0)30 2536857, fax +31 (0)30 2518366, e-mail: The doctoral thesis will be defended on 17 March 2003. Mr Geraats’ supervisor is Prof L.C. van Loon.

Nalinie Moerlie | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>