Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First sightings of individual proteins as they fold

19.03.2003


Proteins, it appears, have taken Frank Sinatra’s "I Did It My Way" close to heart. A new study published in the current issue of Proceedings of the National Academy of Sciences (PNAS) reveals how single proteins, each a few nanometers (billionths of a meter) long, fold to assume their final shape. It shows that even proteins having the same final shape achieve it by taking different routes.



Proteins are the fundamental components of all living cells. They start out as randomly shaped chains of amino acids and twist into a well-defined three-dimensional structure that determines their function. When this process goes awry, it can result in a wide variety of disorders, including some cancers.

For decades, scientists have pondered how proteins fold. The answer, it was long believed, could be obtained only through watching the folding process of individual proteins. Yet this presented a huge challenge since proteins are extremely small and constantly on the go.


Using a novel technology developed in their lab, a group of scientists headed by Dr. Gilad Haran of the Weizmann Institute’s Chemical Physics Department took the first glimpses of single proteins in the act of folding. The proteins fold cautiously, in stages. They make decisions along the way, taking into account decisions made during earlier folding stages, their environment, and their own condition. The results verify what theoretical scientists have suspected for nearly a decade – that protein molecules vary in the routes they take to the same folded shape and form numerous intermediate shapes on the road. The belief that had prevailed earlier was that one distinct route would dictate each shape.

In the past, scientists had tried to pin proteins down to get a steady look at them, but this often changed their properties. The technology that made it possible to view the proteins, previously published by the Weizmann team, is a unique "protein safari." The scientists’ solution was to trap the proteins in vesicles where they could move about freely, unaware of scientist-made borders. These vesicles, composed of lipids (the same materials that form the membranes of living cells), are 100 nanometers wide. Thus, they are much larger than the proteins yet narrow enough to be fully lit by a tightly focused laser beam (which is around 300 nanometers wide). They are attached to a clean glass surface, making their contents easy to view over long periods of time.


###
Dr. Gilad Haran’s research is supported by the Avron-Wilstaetter Minerva Center for Research in Photosynthesis, Fritz Haber Center for Physical Chemistry and Clore Center for Biological Physics. Dr. Haran is the incumbent of the Benjamin H. Swig and Jack D. Weiler Career Development Chair.


Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>