Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new tool shows how dividing cells finish what they start

14.03.2003


Discovery highlights molecular screening work at Institute of Chemistry and Cell Biology


Boston, Mass. — Scientists studying how cells know when and where to divide now have a new tool to study the final fast stage of cell division. The first experiments using this new tool reveal some of the molecular conversation that helps a cell tightly choreograph the time and place of pinching into two cells. In the March 14 Science, researchers from Harvard Medical School (HMS) and colleagues report the discovery of a small compound called "blebbistatin" that blocks the final cleavage motion after cells have duplicated and separated their chromosomes.

Blebbistatin works by interfering only with a type of myosin necessary for the final stage of cell division, said HMS postdoctoral fellow Aaron Straight, first author of the paper. The final stages of cell division happens in mere minutes – too fast for scientific scrutiny. Other inhibitors that slow or stop cell contraction also damage other parts of the cell, obscuring molecular details. Blebbistatin appears to works with the precision of a scalpel, both freezing the action and preserving other molecules and functions for detailed study.

Myosin – the protein responsible for the contraction of muscle - is central to many aspects of human biology, including heartbeat, breathing and movement. Myosin mutations can cause heart disease, deafness, blood disorders and blindness. Myosin is also necessary for single cells to divide. Myosin is required for each and every cell division in the human body, beginning with one fertilized cell to the billions of cells in an adult, Straight said. Myosin also powers the movement of cells through the body, including immune cells that are trying to kill an invading pathogen and nerve cells seeking to make the proper connections in the developing brain.



Straight and his colleagues discovered more details about when and where the action of myosin is required in cytokinesis, the final stage of cell division. In one of two main findings, they showed for the first time in mammalian cells that a cell uses the same cellular machinery to finish as it uses to start division, which had been shown earlier in yeast. Specifically, when they blocked that machinery – proteosomes, which destroy key proteins as a necessary step in many cell functions – the cell was unable to complete cell division.

In the other finding, the researchers identified a few of the molecular details that the microtubules use to signal the time and location of cleavage between cells after they pull the duplicated chromosomes apart. The signals between the microtubules and the cell membrane diverge into two pathways, one that signals myosin and a second unknown pathway that positions another protein (anillin) needed for the final stage of cell division.

"A complex network of signaling from microtubules to the cell membrane tells the cell both when and where to divide," Straight said. "The same thing that is pulling chromosomes apart is making sure that cells divide in the proper place so that the genetic material gets equally segregated into the two daughter cells."

Blebbistatin was discovered by screening 17,000 small molecules in the chemical library of the HMS Institute of Chemistry and Cell Biology, co-directed by Timothy Mitchison, HMS Hasib Sabbagh professor of cell biology and co-author of the paper.

Co-authors include: Amy Cheung, visiting scientist from Merck; John Limouze, student, and James Sellers, chief of the Cell Motility Lab, both at the National Health Lung and Blood Institute; Irene Chen, student at Massachusetts General Hospital; and Nick Westwood, assistant professor of chemistry at University of St. Andrews, Scotland.




The work was supported by grants from the National Institutes of Health, Merck & Co., E. Merck, and the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 18 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, The Forsyth Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>