Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crows alter their thieving behavior when dealing with kin or other birds

12.03.2003


Animal behaviorists have something new to crow about.



Researchers at the University of Washington have found a species of crow that distinctly alters its behavior when attempting to steal food from another crow, depending on whether or not the other bird is a relative.

The Northwestern crow (Corvus caurinus) uses a passive strategy when it attempts to take food from kin but becomes aggressive when it tries to steal a morsel from a non-related crow. This is believed to be the first time that such a behavior pattern has been observed in any bird species.


The findings are published in the current issue of the journal Bird Behavior by Renee Robinette Ha, a UW lecturer in psychology, and James Ha, a research associate professor of psychology. In a companion paper to be published in the next issue of the journal Animal Behavior, the Has, a husband-wife team, quantified scrounging or thievery attempts among Northwest crows. When birds found valuable items such as small fish or clams, other birds tried to steal the food 46 percent of the time and 41 percent of those attempts were successful.

"This research shows these birds discriminate kin from non-kin," said Renee Ha. "They can tell who they are related to and treat birds differently. We know it is more complex and sophisticated than being based on just the birds they know. Crows and other corvids (ravens, jays and magpies) are highly complex cognitively and socially, and are very adaptive."

Earlier work by the Has showed that thievery is common among these birds, which are constantly looking for an opportunity to filch a snack from another crow.

To understand crow behavior, the UW researchers captured and banded 55 birds that foraged in a suburban Snohomish County park along Puget Sound north of Seattle. They also drew a small blood sample from each bird. The bands enabled the researchers to identify individual crows. DNA analysis of the blood allowed the Has to determine which of the banded birds were related.

The researchers observed the crows for 223 hours over the course of 2½ years, looking for instances of thievery involving two banded birds. The crows’ behavior was remarkably different, depending on the target of a theft.

When the birds are related a crow will use a passive strategy and "walk up to or kind of sidle next to the bird with the food. Often the second bird will give up the food to the scrounger," said Renee Ha. "With aggressive scrounging, there is usually a flying approach by the thief who nearly lands on the other bird. This can be followed by vocalization, physical contact and attempts to take the food. Usually it also involves chasing and avoidance by the bird with the food."

She added that there does not appear to be any other pattern associated with scrounging. The sex or age of the birds do not seem to be factors and the birds will steal from relatives as well as non-relatives.

The researchers noted that the majority of the crows they observed engaged in hunting for food, as well as thievery. A few crows only hunted and none exclusively relied on stealing.

"Crows can not steal for a living because there are not enough opportunities to steal enough big food items. Scrounging fills a gap and crows will do it if the bird next to them has high value food that takes time to swallow," Renee Ha said.

James Ha added that the Northwest crows have complex social groups. "They tend to associate in stable groups that contain some of the same birds all of the time. But these groups are not kinship groups and the members are not all necessarily related to each other. They will try to steal food from familiar birds, kin or strangers," he said.

"This behavior seems to be specific to Northwest crows which are shoreline feeders of large prey, said Renee Ha. "Most people, regardless of where they live, are familiar with the more common American crow (Corvus brachyrhynchos), which feeds on worms and grain. That kind of food does not offer targets for thievery."


###
Co-authors of the study were Paul Bentzen, a former UW associate professor of aquatic and fishery sciences who is now with the biology department at Dalhousie University in Canada, and Jennifer Marsh, a UW psychology doctoral student. The research was funded by the Animal Behavior Society; Sigma Xi, a scientific honor society; and the UW.

For more information, contact Renee Ha at (206) 685-2380 or robinet@u.washington.edu or James Ha at (206) 543-2420 or jcha@u.washington.edu.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>