Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernating black bears shed light on treatments for osteoporosis

05.03.2003


Unlike humans, bears seem to recover from bone loss caused by inactivity


Wild black bears may hold some secrets to preserving bone in humans.


Researchers at Penn State Milton S. Hershey Medical Center and Michigan Technological University recently studied the animal’s unique ability to rebound from significant bone loss suffered each year during hibernation. Their study, published in the March 2003 issue of Clinical Orthopedics and Related Research, shows that wild black bears have a built-in coping mechanism that ensures that yearly hibernation doesn’t leave the bears’ bones too fragile.

"In humans, disuse or immobilization as a result of bed rest or injury causes rapid bone loss, which may not be completely recoverable and can lead to weakness and fractures," said Henry J. Donahue, Ph.D., professor of orthopedics and rehabilitation, Musculoskeletal Research Laboratory, Penn State Milton S. Hershey Medical Center. "With this study, our goal was to determine how bears recover from five to seven months of hibernation each year, which can cause them significant bone loss due to disuse."



Seth Donahue, Ph.D., a former post-doctoral fellow at Penn State College of Medicine, and an assistant professor of biomedical engineering, Michigan Technological University, added, "the black bear’s mechanism of bone recovery may even provide insight into other, more common bone diseases like age-related osteoporosis and provide a rationale for the development of new pharmacological therapies." In addition to the aging and those confined to bed, bone loss is also a problem for those with spinal cord injuries and astronauts exposed to microgravity during extended space flight.

In the study, blood samples were obtained from radio-collared wild black bears during winter denning and active summer periods. Blood samples were collected at Virginia Polytechnic Institute and State University following procedures approved by the Virginia Tech Animal Care Committee. A total of 17 bears were a part of the study: seven males ages one to seven years; six females ages one to 12 years with cubs; and four females ages one to 17 years without cubs. Bears went into hibernation in December and came out in mid-April. For the sample collected during hibernation, researchers confirmed that bears had denned from one to three months.

After collection, the blood was spun in a centrifuge to attain the blood serum, the liquid portion of the blood free of red cells and clotting agents. Then, radioimmunoassays were performed to determine serum concentrations of three substances: cortisol; the carboxy-terminal cross-linked telopeptide (ICTP) – a marker of bone loss; and the carboxy-terminal propeptide of type I procollagen (PICP) – a marker of bone formation.

Higher concentrations of ICTP or PICP in the serum indicate that a bear is losing bone or forming bone, respectively. Although its role is somewhat unclear, cortisol, a naturally-occurring steroid hormone, has been shown to have a negative effect on bone density in humans. The same serum markers of bone loss and formation measured in this study already have proven useful for assessing bone status in humans with osteoporosis.

In the study of bears, results showed that ICTP and serum cortisol significantly increased during hibernation for all bears. However, PICP was not significantly different during the denning period than in the active period. Females who gave birth in the den showed relative increases in bone loss and larger decreases in bone formation than other bear groups, but the differences were not significant when compared with the other bear groups. PICP, the bone formation marker, was four- to fivefold higher in an adolescent and 17-year-old bear early in the active period compared with later in the summer months.

The data suggests that bears, like other animals, lose bone during extended periods of disuse. However, humans and other animals tend also to decrease bone formation during sedentary periods.

"These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining the same level of bone formation as when they’re active," Seth Donahue said. Because bears do not urinate or defecate during hibernation, it is likely that the calcium freed in the body due to bone loss is reused in bone formation.

With the yearly hibernation period roughly equal to the active period, and with bone formation taking longer than bone loss, how do bears maintain bone long term?

"They may be able to make more rapid and complete recoveries during remobilization than other animals," Seth Donahue said. "The bone formation marker was four- to fivefold higher in early remobilization months in two female bears.

One possible mechanism for complete recovery is that bone cells in bears are more sensitive to mechanical stimulation and circulating hormone levels during remobilization and therefore rebuild bone faster." Because the researchers were limited as to when they could collect samples, it’s unclear whether all the bears experienced elevated bone formation in the period immediately following hibernation.

"These findings lend support to the hypothesis that black bears have the ability to minimize bone loss during disuse by maintaining bone formation and completely recover lost bone by increasing bone formation during remobilization," Henry J. Donahue said.



###
This work was supported by a National Institute of Aging, National Institutes of Health, grant (R01-AG13087) awarded to Henry J. Donahue, Ph.D. Other research team members were: Michael Vaughan, Ph.D., U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Virginia Polytechnic Institute and State University; and Laurence M. Demers, Ph.D., Departments of Pathology and Medicine, Penn State College of Medicine, Penn State Hershey Medical Center.

Valerie Gliem | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>